МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Омский государственный технический университет»

А. М. Калашников

МОДЕЛИРОВАНИЕ И АНАЛИЗ ОБЪЕКТОВ С КОНТРОЛИРУЕМОЙ МИКРОСТРУКТУРОЙ КОМПОЗИТНЫХ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Учебное текстовое электронное издание локального распространения

В двух частях

ЧАСТЬ 2

Инженерный анализ

Рекомендовано редакционно-издательским советом Омского государственного технического университета

> Омск Издательство ОмГТУ 2022

Сведения об издании: <u>1</u>, <u>2</u>

Рецензенты:

А. Е. Раханский, к.т.н., старший научный сотрудник ООО НТК «Криогенная техника»;

Д. Г. Новиков, к.т.н., главный эксперт направления перспективного развития АО «Омск РТС»

Калашников, А. М. Моделирование и анализ объектов с контролируемой микроструктурой композитных конструкционных материалов : практикум : в 2 ч. / А. М. Калашников ; Минобрнауки России, Ом. гос. техн. ун-т. – Омск : Изд-во ОмГТУ, 2021–2022. – Систем. требования: процессор с частотой 1,3 ГГц и выше ; 256 Мб RAM и более ; свободное место на жестком диске 300 Мб и более ; Windows XP и выше ; разрешение экрана 1024×768 и выше ; CD/DVD-ROM дисковод ; Adobe Acrobat Reader 5.0 и выше. – Загл. с титул. экрана. – ISBN 978-5-8149-3371-3.

Ч. 2 : Инженерный анализ. – 2022. – CD-ROM (14,7 Мб) : ил. – ISBN 978-5-8149-3444-4.

Практикум состоит из двух частей. Во второй части приведены лабораторные работы по изучению инструментов для подготовки и проведения инженерного анализа объектов с контролируемой микроструктурой композитных конструкционных материалов.

Предназначен для обучающихся по направлениям 28.03.02 «Наноинженерия»; 15.03.02, 15.04.02 «Технологические машины и оборудование»; 16.03.03, 16.04.03 «Холодильная, криогенная техника и системы жизнеобеспечения».

Редактор Т. А. Москвитина Компьютерная верстка Л. Ю. Бутаковой

Для дизайна этикетки использованы материалы из открытых интернет-источников

Сводный темплан 2022 г. Подписано к использованию 04.05.22. Объем 14,7 Мб. © ОмГТУ, 2022

ВВЕДЕНИЕ

На сегодняшний день при разработке технологических систем и процессов все чаще используется методика инновационного проектирования. Это связано в первую очередь с тем, что идет рост функциональности CAD/CAE-инструментов, а также с их доступностью. Данные средства реализуют анализ изделия не через чертеж, а с помощью параметрической трехмерной модели, работу которой симулируют с помощью САЕ-пакета. По результатам проведенного анализа осуществляется оптимизация конструкции путем корректировки исходной САD-модели. Поэтому при отработке виртуальной модели первый же созданный рабочий образец будет работоспособен и надежен.

Цель данного практикума – помочь студентам приобрести навыки для проведения анализа объектов с контролируемой микроструктурой композитных конструкционных материалов с применением САЕ-пакетов на примере Ansys при выполнении самостоятельной работы, курсового и дипломного проектирования.

Вторая часть учебного пособия направлена на углубленное изучение процессов инженерного анализа объектов с контролируемой микроструктурой композитных конструкционных материалов с применением таких модулей, как ANSYS Workbench, ANSYS Material Designer, ANSYS Composite PrepPost, ANSYS Static Structural, Transient Structural, Steady-State Thermal и инуструмента Parameters.

Приобретение и закрепление знаний в области моделирования объектов с контролируемой микроструктурой композитных конструкционных материалов у студентов происходит в процессе выполнения следующих лабораторных работ:

1. Статический прочностной анализ пластины из композиционных материалов.

3

2. Динамический прочностной анализ оболочки из композиционных материалов.

3. Тепловой анализ оболочки из композиционных материалов.

4. Проведение комбинированного анализа оболочки из композиционных материалов.

5. Использование инструмента Parameters при моделировании деформации оболочки из композиционных материалов.

ПРОВЕДЕНИЕ ЧИСЛЕННОГО АНАЛИЗА В ANSYS

ANSYS – универсальная программная система конечно-элементного (КЭ) анализа, является довольно популярной у специалистов в области компьютерного инжиниринга (САЕ, Computer-Aided Engineering) и КЭ решения линейных и нелинейных, стационарных и нестационарных пространственных задач механики деформируемого твёрдого тела и механики конструкций (включая нестационарные геометрически и физически нелинейные задачи контактного взаимодействия элементов конструкций), задач механики жидкости и газа, теплопередачи и теплообмена, электродинамики, акустики, а также механики связанных полей.

Начиная с 10-й версии, в комплект программных продуктов ANSYS добавлена программная среда *Workbench* – универсальный инструмент для структурирования и контроля решения задач. В ее состав входит несколько удобных и простых в освоении инструментов для создания геометрии любой сложности, а также сетки конечных элементов, ориентированной на конкретный тип анализа. Workbench без труда позволяет создать геометрию объекта (в том числе с помощью параметрических функций), сетку КЭ и связать, например, тепловой и структурный анализ в рамках одного проекта с возможностью последующего редактирования параметров на любой стадии. Кроме того, эта программная среда дает возможность экономить время путем исключения ручной передачи файлов и перерасчета.

ANSYS Workbench предоставляет мощные методы для взаимодействия с семейством решателей ANSYS, обеспечивает уникальную интеграцию с CAD-системами в процессе проектирования.

Рабочее окно Workbench представлено на рис. 1.

Схема проекта содержит необходимые этапы выполнения анализа (рис. 2). Проект может содержать несколько таких блоков для различных типов инженерных расчетов, между которыми могут устанавливаться связи (рис. 3).

5

🔨 Unsaved Project - Workbench		-	-		-				- 0	×
<u>File View T</u> ools <u>U</u> nits Extensions	He	elp 1								
🗋 📴 🛃 🕕 Project										
👔 Import 🗟 Reconnect 🔯 Refresh Pr	roject	t 🐬 Up	date Proj	ect						
Toolbox 🔻 👎	ĸ	Project S	chematio	-		▼ ₽ X	Prope	rties of Project Sch	iema 🕚	ΨX
□ Analysis Systems 2	FI					3		A		⊧5
Design Assessment						J	1	Prope	rtv	Value
Eigenvalue Buckling							2	Notes		
Eigenvalue Buckling (Samcef)							3	Notes		
(e) Electric	TI						4	Project Up	date	
Explicit Dynamics							5	Lindate	Ontion	P V
🔄 Fluid Flow - Blow Molding (Polyflow)								opulate	option	K 🔟
Fluid Flow-Extrusion(Polyflow)										
G Fluid Flow (CFX)										
S Fluid Flow (Fluent)										
Fluid Flow (Polyflow)										
Marmonic Response										
Hydrodynamic Diffraction										
Hydro dynamic Response										
IC Engine										
0 Magnetostatic	14									
1 Modal	11	Message	s			→ ₽ Χ				
Modal (ABAQUS)	11		۵	В	C	D /				
Modal (Samcef)	11		Turne	Tout		H Date/Time				
Random Vibration		1	туре	Text	iociai	u Date/Time				
Response Spectrum										
Rigid Dynamics										
Static Structural	Ы									
View All / Customize	ЦĻ									
Ready							Show	Progress 🔑 Hic	de 0 Mess	ages 🔡

Puc. 1. Рабочее окно Workbench:

1 – главное меню; 2 – панель инструментов проекта; 3 – основное окно проекта; 4 – окно сообщений; 5 – окно свойств выбранного объекта

•		А			
1	.	Static Structural			Ι.
2	٢	Engineering Data	~		1
3	\bigcirc	Geometry	?	4	2
4	۲	Model	7	4	13
5		Setup	7	4	4
6	(iii)	Solution	7	4	Į
7	۲	Results	?	4	6
		Static Structural			

Рис. 2. Блок проекта:

- 1 задание свойств материалов; 2 создание геометрической модели;
 - 3 генерация сетки; 4 задание параметров симуляции;
 - 5 решение задачи; 6 предоставление результатов анализа

Рис. 3. Настройка связей:

- *1* добавление композитного материала;
- 2 добавление подготовленной сеточной модели в расчет

В среду ANSYS Workbench входит несколько различных приложений:

Material Designer – приложение для создания композитных материалов.

ANSYS Composite PrepPost (ACP) – приложение, которое позволяет просто и удобно моделировать сложные структуры изделий из композитных материалов. Данный инструмент ускоряет процесс расчётов, при этом выдерживается высокая точность получаемых результатов.

Mechanical – приложение для выполнения структурного и теплового анализа с использованием решателя ANSYS. Наложение сетки на область расчета также включено в Mechanical.

Fluid Flow (CFX) – приложение для выполнения анализа с использованием CFD CFX.

Fluid Flow (FLUENT) – приложение для выполнения анализа с использованием CFD FLUENT.

DesignModeler (геометрия) – приложение для создания и редактирования CAD-геометрии и подготовки твердотельной модели для использования в дальнейших расчетах.

Engineering Data – приложение для определения свойств материала.

Meshing Application – приложение для генерации области расчета CFD и генерирования сетки.

Design Exploration – приложение для проведения проектных исследований и оптимизации анализов.

Finite Element Modeler (FE Modeler) – приложение для адаптации сетки, полученной в NASTRAN и ABAQUS, при использовании в ANSYS.

Пакет ANSYS Material Designer является ключевым инструментом при изучении композитных материалов.

Интерфейс *Material Designer* представлен на рис. 4.

7

Puc. 4. Окно Material Designer:

1 – панель инструментов; 2 – дерево проекта;

3 – настройки элементов проекта; 4 – окно просмотра модели

В *Material Designer* могут быть созданы следующие типы объемных элементов модифицированных микроструктур:

– пространственно-структурная конструкция;

– композиты, армированные регулярными однонаправленными

волокнами;

🐂 – композиты, армированные нерегулярными однонаправленны-

ми волокнами;

- 52
- коротковолокнистый композит;
- 1

– плетеный композит;

0

– сферические частицы;

– дисперсно-упрочненный композит;

– пользовательская ячейка.

Рис. 5. Окно АСР:

1 – главное меню; 2 – дерево проекта;

3 – настройки элементов проекта; 4 – окно просмотра модели

Пакет ANSYS Mechanical позволяет решить практически любую задачу механики деформируемого твердого тела или получить сопряженное решение задачи механики с решением задач других областей физики, например гидрогазодинамики, теплопереноса или электромагнетизма. Данный пакет предлагает возможность создания единой фундаментальной матрицы взаимодействия полей с поддержкой акустического, пьезоэлектрического, термопрочностного и термоэлектрического типов анализа. При наличии продукта ANSYS CFD или ANSYS Emag также можно провести анализ взаимодействия конструкции с различными текучими средами или электромагнитными полями соответственно. Подобные расчеты помогут будущему инженеру лучше оценить реакцию их моделей на всевозможные комбинации явлений.

ANSYS Mechanical способен решать следующие типы задач:

– прочностной анализ – статический;

– линейная и нелинейная устойчивость;

– контактные задачи;

- тепловой анализ и т. д.

Данный пакет включает: полный набор линейных и нелинейных элементов, удобную для использования и редактирования базу материалов от конструкционной стали до резины, а также широкий набор методов решения (решателей). Это позволяет легко решать самые сложные и комплексные задачи, даже если они включают нелинейный контакт.

Рабочее окно *Mechanical* представлено на рис. 6.

Рис. 6. Окно Mechanical:

1 – главное меню; 2 – панель инструментов;

3 – дерево проекта; 4 – настройки элементов проекта;

5 – окно просмотра модели; 6 – сообщения системы

Панель инструментов имеет широкую функциональность и предназначена для настройки отображения проекта и проведения его анализа.

Дерево проекта отображает разделы проекта, используемые для проведения анализа.

Настройки элементов проекта меняются в зависимости от выбранного раздела дерева проекта и предназначены для контроля параметров проекта.

Сообщения системы отображают сообщения об ошибках системы и дают рекомендации для их устранения.

Лабораторная работа № 1 СТАТИЧЕСКИЙ ПРОЧНОСТНОЙ АНАЛИЗ ПЛАСТИНЫ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Цель работы

Изучение основных этапов проведения статического прочностного анализа в среде *ANSYS Workbench*. Приобретение студентами навыков в использовании программного инструмента *ANSYS Workbench – Static Structural* при проведении прочностного анализа пластины из композиционных материалов, созданных с помощью *Material Designer* и *ACP* (*Pre*).

Описание работы

Используя модули *Material Designer*, *ACP* (*Pre*) и *Static Structural*, необходимо рассчитать полное перемещение (*Total Deformation*) и эквивалентные напряжения (*Equivalent Stress*) для пластины из композиционных материалов (рис. 1–3). Известны материал волокна и наполнителя, тип объемного элемента, участок жесткой заделки (*Fixed Support*) и направление действия вектора давления Р (*Pressure*), приложенного к поверхности (табл. 1).

Рис. 1. Схема № 1: *1* – жесткая заделка; *2* – давление Р

Рис. 2. Схема № 2: 1 – жесткая заделка; 2 – давление Р

Рис. 3. Схема № 3: 1 – жесткая заделка; 2 – давление Р

Таблица 1

Исходные данные

Dopuour	Номер	Материал волокон (1) /	Тип объемного	Давление Р,
схемы		наполнителя (2)	элемента	кПа
1	1	 Carbon Fiber (230 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Регулярная однонаправленная	1
2	2	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Плетеная	0,5
3	3	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Регулярная однонаправленная	1,4

Продолжение табл. 1

D	Номер	Материал волокон (1) /	Тип объемного	Давление Р,
Вариант	схемы	наполнителя (2)	элемента	кПа
4	1	 Carbon Fiber (290 GPa) Epoxy E-Glass UD 	Сферическая	-1
5	2	 Carbon Fiber (395 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Плетеная	0,4
6	3	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Сферическая	0.2
7	1	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Плетеная	-0,5
8	2	 Carbon Fiber (395 GPa) Epoxy E-Glass UD 	Плетеная	-0,4
9	3	 Carbon Fiber (230 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Регулярная однонаправленная	-1
10	1	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Регулярная однонаправленная	1
11	2	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Плетеная	1,2
12	3	 Carbon Fiber (290 GPa) Epoxy E-Glass UD 	Сферическая	1
13	1	 Carbon Fiber (395 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Сферическая	0,5
14	2	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Регулярная однонаправленная	-1,4
15	3	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Сферическая	1
16	1	 Carbon Fiber (395 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Регулярная однонаправленная	-1

Окончание табл. 1

Dominant	Номер	Материал волокон (1) /	Тип объемного	Давление Р,
Бариант	схемы	наполнителя (2)	элемента	кПа
17	2	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Плетеная	0,5
18	3	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Плетеная	-0,4
19	1	 Carbon Fiber (395 GPa) Epoxy E-Glass UD 	Сферическая	-1
20	2	 Carbon Fiber (230 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Регулярная однонаправленная	1
21	3	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Регулярная однонаправленная	1,2
22	1	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Плетеная	0,8
23	2	 Carbon Fiber (290 GPa) Epoxy E-Glass UD 	Регулярная однонаправленная	0,5
24	3	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Сферическая	-0,7
25	1	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Сферическая	-1
26	2	 Carbon Fiber (395 GPa) Epoxy E-Glass UD 	Плетеная	-1,2
27	3	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Сферическая	-0,4
28	1	1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD	Плетеная	0,8
29	2	 Carbon Fiber (395 GPa) Epoxy E-Glass UD 	Регулярная однонаправленная	1
30	3	 Carbon Fiber (290 GPa) Epoxy E-Glass UD 	Плетеная	0,5

Порядок выполнения лабораторной работы

1. Запускаем ANSYS Workbench и добавляем несколько модулей: Material Designer, ACP (Pre) и Static Structural (рис. 4).

Рис. 4. Добавление модулей

2. Дважды нажимаем левой кнопкой мышки (ЛКМ) на блок Engineering Data (1), после чего жмем на Engineering Data Sources (2). Выбираем библиотеку Composite Materials (3) и подключаем материалы согласно своему варианту (4). После этого можно закрыть Engineering Data (5) (рис. 5).

a

Рис. 5. Выбор материала волокна и наполнителя (начало)

[
unsaved Project - Workbench													-		×
Ele Edit View Tools Units Extens	ions Jo	bs <u>H</u> elp													
🎦 💕 🛃 🔣 📑 Project 🥏 A2:E	ngineerin	g Data 🗙 5													
🍸 Filter Engineering Data 🏢 Engineering Data	Sources	2													
Toolbox 👻 🖡 🗙	Enginee	ring Data Sources							~ ₽	×	Table of Pro	perties Row	2: Density		- 7 X
Viscoelastic ^		A	в		с			D		^		A			
Shape Memory Alloy	1	Data Source	1	Lo	cation			Descriptio	in		1 De	ensity (kg m'	-3) 📮		
Geomechanical	6	Geomericanical Materials					General use	material samples fo	or use with		2 20	00			
Damage			-			-	geomechani	cal models.							
E Cohesive Zone	7	Composite Materials				R	Material san	ples specific for co	mposite structures.						
Fracture Criteria	8	General Non-linear Materials				2	General use analyses.	material samples fo	or use in non-linear						
Crack Growth Laws	0	Explicit Materials					Material san	nles for use in an e	volicit analysis.						
Thermal	10	Hyperelactic Materiale					Material etre	ec-ctrain data cam	nies for curve fitting						
Thermopower	10	in hyperclaster nacing	-			-	B-H Curve s	amples specific for	use in a magnetic						
Linear "Soft" Magnetic Material	11	Magnetic B-H Curves				R.	analysis.	ampico apcone for	and magnetic	~					
Linear "Hard" Magnetic Material	Outline	of Composite Materials							* 4	×					
Nonlinear "Soft" Magnetic Material		A		в	С		D		E	^					
Nonlinear "Hard" Magnetic Material	1	Contents of Composite Materials	÷.	Ad	ld	- 3	Source	De	scription		Chart: No da	ata			• ₽ X
Electric	3	📎 Carbon Fiber (230 GPa)		4	. 1	e (Composite_M	Fibers only		1					
Brittle/Granular	4	🗞 Carbon Fiber (290 GPa)	ŧ.	4	ا چ	æ (Composite_M	Fibers only							
Equations of State	5	Scarbon Fiber (395 GPa)		-		æ (Composite_M	Fibers only							
Porosity	6	Sec. E-Glass		-		æ (Composite_M	Fibers only							
E Failure	7	Sepoxy Carbon UD (230 GPa) Prepreg		-			Composite M								
H Nonlinear	8	Second Carbon LID (230 GPa) Wet				- a	Composite M								
Crasco-Prastic Denavlor	0	Enoxy Carbon LD (395 GPa) Prenren	-				Composite M								
El Composte	10	Enoxy Carbon Woven (23) GPa) Pravan			-	= ` @ ,	Composite M								
El Forming Plastidy	10	Enovy Carbon Woven (230 GPa) Wet	-		-	= `	Composite M								
E Foams	11	Epoxy Carbon Woven (200 GPa) Wet			-	= `	Composite_M								
E Eulerian	12	Epoxy Caluon Woven (395 GPa) Prepreg	1				Composite_M								
FI Concrete	13	S Epoxy E-Glass OU	4			= (Composite_M			~					
E Custom Material Models	Properti	es of Outline Row 13: Epoxy E-Glass UD							* ¢	×					
View All / Customize		A						В	с	0					
Ready								A. Job Monitor	No DPS Connection	n (Beta	a) 🚥 Show	Progress	🔑 Show	0 Mess	ages .:
				б											
				0											

Рис. 5. Выбор материала волокна и наполнителя (окончание)

3. В первом модуле дважды нажимаем ЛКМ на *Material Designer*, после чего откроется окно, представленное на рис. 6.

🔤 📂	. 5) - (× ⇒			A:Mat	erial Desi	gner - De	sign1 - SpaceCl	laim - Mater	rial Design	er			- 0	×
File	Addit	ive	Material (Designer	1920		-		<u> </u>							^ (?)
R	ZX.	. 4			5.3					0	•	•	0	•	×	
Edit G	Lattice	UD Co	omposite	Random UD Composite	Chopped Fiber Composite RVE Typ	Woven Composite e	Particle	Random Particle	User Defined	RVE Model •	Solve	Update •	Display •	Help	Exit MD Mode	
Outline				4												
Struct_ L Options - Skete Snap	RVE Model Materi Geom Mesh Settiny Inalyses aye Se Selection ch p to grid	el als etry gs lecti C	Grou. Vie	ws Outli						Ť				A	NSYS	5
Snap Crea Properties	p to angle ate layout s	e curves	3	7	Y				z		×					
Propertie	es Appe	arance			z Design1×	×									10m	m ⊲ ⊳ ×
Ready								A -				C 🔊 R	- C) - la	h - +	Q - 10	

Рис. 6. Окно Material Designer

4. В верхней панели инструментов (рис. 7) выбираем тип объемного элемента модифицированной микроструктуры согласно своему варианту (табл. 1).

Рис. 7. Выбор объемного элемента модифицированной микроструктуры

5. В появившейся слева панели присваиваем материал матрицы/ наполнителя (1) и частицы/волокон (2) (рис. 8), после чего применяем изменения (3).

Рис. 8. Присвоение материалов

6. Для создания геометрии объемного элемента (рис. 9) нажимаем ЛКМ на *Geometry* (1). После этого в левой панели настроек отобразятся настройки геометрии объемного элемента (2) (в зависимости от типа, выбранного объемного элемента настройки могут быть различны). Нажимаем на галочку (3) и на рабочем пространстве появится трехмерная модель сгенерированного объемного элемента (4).

Рис. 9. Создание геометрии объемного элемента

7. Сгенерируем сеточную модель объемного элемента (рис. 10). Нажимаем ЛКМ на *Mesh* (1) и задаем максимальный размер сеточного объемного элемента (2). Нажимаем на галочку (3) и видим на экране сгенерированную сетку (4) объемного элемента.

Рис. 10. Создание сетки объемного элемента

8. Нажимаем ЛКМ на *Settings* (1). На панели слева (2) можно выставить интересующие настройки анализа объемного элемента (рис. 11), но в нашем случае они остаются без изменения. Нажимаем галочку (3) и видим системное окно, предупреждающее о результатах проведенного анализа (4).

Рис. 11. Выбор характеристик частицы

9. Присваиваем название созданному объемному элементу (рис. 12).

Рис. 12. Создание сетки объемного элемента

Для этого нажимаем правую кнопку мыши (ПКМ) на *Analyses* (1) – *Constant Material* (2), вводим название материала (3) и нажимаем на галочку (4). Закрываем окно *Material Designer*.

10. Создадим связь между первым и вторым модулями *Material Designer* для присвоения созданного нами композитного материала к анализируемой геометрии через второй блок (рис. 13):

10.1. В окне ANSYS Workbench нажимаем ПКМ на Material Designer
(1) и выбираем Update Update Для обновления проекта композитного материала.

10.2. Зажимаем ЛКМ *Material Designer* (1) и перетаскиваем его к *Engineering Data* (2).

10.3. Нажимаем ПКМ на *Engineering Data* (2) и выбираем *Update*.

Рис. 13. Создание связи

11. Импортируем геометрию:

11.1. Дважды нажимаем ЛКМ на блок *Geometry* у модуля ACP (Pre).

11.2. В появившемся окне нажимаем *File – Open*.

11.3. Для того чтобы найти созданную геометрию, переходим в папку с ней и выбираем отображение всех форматов – *All Files* (*.*). Нажимаем на созданную геометрию с расширением «.x_t» и жмем кнопку *Открыть*. Импортированная геометрия показана на рис. 14.

Рис. 14. Импорт геометрии

11.4. После этого окно геометрии можно закрыть.

12. Приступаем к созданию сетки:

12.1. Дважды нажимаем ЛКМ на блок *Model* у модуля *ACP* (*Pre*).

12.2. В открывшемся окне раскрываем вкладку Geometry (1), выделяем геометрию (2) и задаём толщину (3) 0,5 мм (рис. 15).

Рис. 15. Задание толщины пластины

12.3. Задаем настройки сеточной модели:

– жмем ПКМ на *Mesh – Insert – Method*, выделяем геометрию (1) и выбираем метод (2) – *Multizone Quad/Tri* (рис. 16);

Рис. 16. Задание настроек сетки

– жмем ПКМ на *Mesh – Insert – Sizing*, выделяем всю геометрию (1) и задаем величину ячеек 1 мм (2) (рис. 17).

	Outline So	lveral	Mesh		Preview	1				Cont	rois		
0	utline			× ∓ ₽ □ ×	ି ପ୍ ପ୍	1	§ □	0 - 💠	Q 9	0	0	Select	• N
and the second sec	Name ▼ Project Project ■ √ ® Geome □ √ ® Geome □ √ ® Materia ■ √ % Coordin □ √ ® Mesh ↓ √ ® 0	Search Outlin htry als nate Systems fultiZone Quad/T fody Sizing	ne 💙 🗸		Body Sizi 16.11.202	ng 1 13:44 Sizing						Steel	
D	etails of "Body Sizin	ig" - Sizing 👓		~ ∓ ∏ ×									
Ξ	Scope												
	Scoping Method	Geometry Selec	ction										
	Geometry	1 Body	1										
Ξ	Definition												
	Suppressed	No										\sim	
	Туре	Element Size	_			1							
	Element Size	1, mm	2										
Ξ	Advanced												
	Defeature Size	Default (1,6591	le-002 mm)										
	Behavior	Soft											
	Growth Rate	Default (1,2)											
	Capture Curvature	No				1							

Рис. 17. Задание настроек сетки

12.4. Нажимаем ПКМ на *Mesh* и выбираем *Generate mesh*. Готовая сеточная модель представлена на рис. 18. Закрываем окно блока *Model*.

Рис. 18. Генерация сеточной модели

12.5. Присваиваем имена поверхностям, к которым будут прикладываться силы. Выделяем каждую область ЛКМ, после чего нажимаем на неё ПКМ (1) и выбираем *Create Named Selection...* (2) (рис. 19). В итоге две поверхности будут иметь персональное название (3).

Рис. 19. Присвоение имен для поверхностей

12.6. Нажимаем ПКМ на *Mesh*, выбираем *Update* 😥 и после этого окно *Mechanical* можно закрыть.

13. Теперь можно настроить слои созданных композитных материалов:

13.1. В окне *Workbench* дважды нажимаем на *Setup* в блоке *ACP* (*Pre*). После этого перед нами появится окно, представленное на рис. 20.

ACP-Pre.acph5 - ANSYS Composite PrepPost		– 🗆 ×
File View Tools Units Help		
Q Search 🛞 🗇	Scene.1	
ACP - Pre	🤌 🗷 🖻 🗇 🗇 🗇 🖓 🐄 🕼 🧇 🖉 🗣 🖉 🖉 ♀↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 🖬 🖉 📟 🖹 🐼 🖻 득	
😑 🚭 Models	ACP Model 1611/07211347	
🖶 🛶 🥰 Material Data	Total mase	ANSYS
🗈 🧃 Element Sets	The construction of the co	
😚 Edge Sets	Unit: m	
H Rosettes		
🐺 Look-Up Tables		
Generated Selection State		
Content of Selection Sets		
😽 Field Definitions	Inc kness. I	
🍓 Sampling Points	0.8889	
Section Cuts	0,7778	
🦉 Sensors	0,0007	
🗄 🔄 Layup Plots	0,55550	
i scenes	0,4444	
🕉 Ply Book	0.3333	
Parameters	0.22222	
🐨 🚈 Material Data		
	U	
	×	
	2	
	-	
	Shell View Logger History View	
		^
	TU [6]: GD'WOGGTZ[A.MCK WOGGT.]'SCLIAG SCEUE=GD'WOGGTZ[A,WCK WOGGT,]'SCEUE2[,2CEUE'1,]	
	In [7]:	
		~
Finished saving ACP Model ACP Model to acph5 file after 0.2	23s. MKS (m,kg,s,N,C,USD)	

Рис. 20. Окно ANSYS Composite PrepPost

13.2. Сразу изменяем единицы измерения на мм. Для этого нажимаем на *Units* (1) и выбираем *MPA (mm,t,s,N,C,USD)* (2) (рис. 21).

Рис. 21. Изменение единиц измерения

13.3. Создаем слой волокон композитного материала (рис. 22):

– для этого раскрываем раздел *Material Data* (1), нажимаем ПКМ на *Fabrics* (2) и выбираем *Create Fabric*... (3);

– выбираем материал (4), задаем толщину 0.5 мм (5) и жмем *Apply* (6). Если на экране появится окно с предупреждением, то его можно закрыть. После этого окно можно закрыть (7).

а

鸄 Fabri	c Properties	;				—		×
Name:	Fabric.1							
ID: F	abric.1							
General	Analysis	Solid Model	Opt.	Draping				
Genera								
N	/laterial: m	nat_1	4					~
Thi	ickness: 0.	5	5					
Pric	e/Area: 0.0	D						
Weigł	nt/Area: -1	.0						
Post-P	rocessing							
Ignore	e for Post-P	rocessing:						
				7		6		
			_		_	-		
				OK	Appl	у	Can	cel

б

Рис. 22. Создание слоя волокон

13.4. Создаем ось координат (рис. 23). Нажимаем ПКМ на *Rosettes* (1), выбираем *Create Rosette*... (2) и жмем *Apply* (3). После этого окно можно закрыть (4).

🕿 Rosette Pro	operties		-	
Name: Rose ID: Roset	<mark>tte.1</mark> te.1			
Type: Paralle	el			~
Definition				
Origin:	(0.0000,0.0000,0.0000)			
1 Direction:	(1.0000,0.0000,0.0000)		Flip	
2 Direction:	(0.0000, 1.0000, 0.0000)		Flip	
	Shuffle Axes		Swap 1 and 2 D	irection
			4 3	I.
		ОК	Apply	Cancel

б

Рис. 23. Создание оси координат

13.5. Создаем ориентированный блок (рис. 24):

- нажимаем ПКМ на *Rosettes* (1) и выбираем *Create Rosette*... (2);

– выбираем элемент/геометрию (выбираем его в дереве построения в разделе *Element Sets*) (3), настраиваем ориентацию (4), выбираем созданную ось координат (5) и жмем *Apply* (6). После этого окно можно закрыть (7).

Рис. 24. Создание ориентированного блока

13.6. Создаем модельную группу (объединение ориентированного элемента и пакета слоев) (рис. 25):

– нажимаем ПКМ на *Modeling Groups* (1) и выбираем *Create Modeling Group...* (2). В появившемся окне жмем *Ok* (3);

- нажимаем ПКМ на *ModelingGroups.1* (4) и выбираем *Create Ply...* (5);

– выбираем первый ориентированный блок (6) и слой композитного материала и жмем *Apply* (8). После этого окно можно закрыть (9).

Рис. 25. Создание модельной группы (начало)

Рис. 25. Создание модельной группы (окончание)

13.7. Включаем отображение сетки (1) и направление волокон (2) в верхней панели (рис. 26). Выбрав модельную группу (3), видим зеленые стрелочки, показывающие направление волокон (4).

Рис. 26. Отображение направления волокон

13.8. Создаем твердотельную модель (рис. 27):

– нажимаем ПКМ на Solid Models (1) и выбираем Create Solid Models...(2);

– выбираем элемент (нажимаем на область элемента и выбираем его в дереве построения) (3) и жмем *Apply* (4). После этого окно можно закрыть (5).

а

Рис. 27. Создание твердотельной модели

13.9. Закрываем окно ANSYS Composite PrepPost.

14. Зажимаем ЛКМ блок Setup (1) в модуле ACP (Pre) и перетаскиваем его на блок Model (2) в модуле Static Structural. После этого появляется окно с двумя вариантами (рис. 28): первый переместит твердотельную модель (есть возможность анализировать каждый слой выбранного сегмента, но может понадобится повторно создать контактные области), а второй переместит тонкостенную оболочку (нет возможности анализировать каждый слой отдельно). После выбора первого варианта нажимаем ПКМ на Setup (1) в модуле ACP (Pre) и выбираем Update.

Рис. 28. Импорт данных в Static Structural

15. Теперь можно приступить к подготовке и проведению прочностного расчета:

15.1. В окне Workbench дважды нажимаем на *Model* в блоке *Static Structural*. После этого перед нами появится окно, представленное на рис. 29.

Рис. 29. Окно Mechanical

15.2. Задаем граничные условия:

– чтобы зафиксировать геометрию в пространстве, нажмем ПКМ на *Static Structural* (1) и выберем *Insert* (2) – *Fixed Support* (3) (рис. 30, *a*). После чего укажем нужную поверхность (4) и нажмем *Apply* (5) (рис. 30, *б*);

б

Рис. 30. Фиксация геометрии в пространстве

– чтобы задать давление, нажмем ПКМ на *Static Structural* (1) и выберем *Insert* (2) – *Pressure* (3) (рис. 31, *a*). После чего укажем нужную поверхность (4), нажмем *Apply* (5) и зададим значение давления (6) (рис. 31, *б*). Примечание: необходимо обратить внимание на выбранные единицы измерения.

а

Рис. 31. Фиксация геометрии в пространстве

15.3. Выбираем параметры, которые будут рассчитываться следующим образом:

нажимаем ПКМ на Solution (1), выбираем Insert (2) – Deformation
(3) – Total (4) (рис. 32, a);

– нажимаем ПКМ на *Solution* (1), выбираем *Insert* (2) – *Stress* (3) – *Equivalent (von-Mises)* (4) (рис. 32, δ). После чего нажимаем на желтую область напротив *Ply* (5) и указываем необходимую модельную группу (6).

a

б

Рис. 32. Выбор результатов

15.4. Запускаем расчет, нажав кнопку *Solve* (1) (рис. 33). Примечание: при запуске расчета может появиться предупреждение о том, что модельная группа имеет слишком длинное имя пути, но на расчет это не повлияет.

Рис. 33. Запуск расчета

15.5. Сохраняем результаты расчета. Для этого переходим во вкладки результатов и делаем их скриншоты (рис. 34). Теперь окно *Mechanical* можно закрыть.

Рис. 34. Результаты расчета: *а* – полное перемещение; *б* – эквивалентное напряжение (начало)

а – полная деформация; *б* – эквивалентное напряжение (окончание)

16. В итоге должен получиться проект, имеющий следующую цепочку модулей (рис. 35).

Refresh P	efresh Project 🕖 Update Project 📲 ACT Start Page															
⊸ џ	×	Project	Sch	ematic												
	^															
			▼	A			▼		В				•	С		
			1	😵 Material Designer			1	ACP	ACP (Pre)				1	🥶 Static Structural		
			2	🥏 Engineering Data	× .		2	٢	Engineering Data	\checkmark		_	2	📦 Model	~	
yflow)			3	🐞 Material Designer	 Image: A second s	\sim	3	SC	Geometry	~	4		3 (🤶 Setup	~	
°				Material Designer			4	6	Model	~	4		4 (👔 Solution	~	
							5	ACP	Setup	~			5 (😥 Results	~	4
									ACP (Pre)					Static Structural		

Рис. 35. Готовый проект

17. Сохраняем проект в папку, ранее созданную студентом (названия папки и проекта должны быть на английском языке). Для этого нажимаем *File – Save As... – Сохранить*. Для того чтобы проект можно было копировать без опасений сбить прописанные пути файлов, необходимо создать его архив. Для этого нажимаем *File – Archive... – Сохранить – Archive*.

Содержание отчета

1. Титульный лист.

2. Цель работы.

3. Описание работы (с исходной схемой и таблицей для своего варианта).

4. Этапы построения (со скриншотами этапов).

5. Результаты работы (финальные скриншоты окон ANSYS Workbench, Material Designer, ACP (Pre) – Geometry, ACP (Pre) – Model, ACP

(Pre) – Setup; Mechanical – граничные условия, Mechanical – результаты).

6. Вывод.

Контрольные вопросы

- 1. Что такое сеточная модель?
- 2. Краткая характеристика САЕ-систем. Примеры.
- 3. Для чего нужен Material Designer?
- 4. Как импортировать геометрию в проект ANSYS?
- 5. В каком блоке происходит настройка сеточной модели?
- 6. Как создавать связь между модулями?
- 7. Для чего нужна операция Fixed Support?
- 8. Основные этапы выполнения работы.

Лабораторная работа № 2 ДИНАМИЧЕСКИЙ ПРОЧНОСТНОЙ АНАЛИЗ ОБОЛОЧКИ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Цель работы

Изучение основных этапов проведения динамического прочностного анализа в среде *ANSYS Workbench*. Приобретение студентами навыков в использовании программного инструмента *ANSYS Workbench – Transient Structural* при проведении прочностного анализа оболочки из композиционных материалов, созданных с помощью *Material Designer* и *ACP* (*Pre*).

Описание работы

Используя модули *Material Designer*, *ACP* (*Pre*) и *Transient Structural*, необходимо рассчитать полное перемещение (*Total Deformation*) и эквивалентные напряжения (*Equivalent Stress*) для оболочки из композиционных материалов (рис. 1–2) во временном интервале в 3 секунды. Известны материал волокна и наполнителя, тип объемного элемента, участок жесткой заделки (*Fixed Support*) и направление действия вектора силы F (*Force*), приложенного к поверхности (табл. 1).

Рис. 1. Схема № 1: *1* – жесткая заделка; 2 – сила F

Рис. 2. Схема № 2: 1 – жесткая заделка; 2 – сила F

Таблица 1

Исходные данные

Вариант	Номер схемы	Материал волокон (1) / наполнителя (2)	Тип объемного элемента	Сила F, H
1	1	 Carbon Fiber (290 GPa) Epoxy E-Glass UD 	Сферическая	50
2	2	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Плетеная	-60
3	1	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Регулярная однонаправленная	70
4	1	 Carbon Fiber (290 GPa) Epoxy E-Glass UD 	Регулярная однонаправленная	100
5	2	 Carbon Fiber (395 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Плетеная	-45
6	2	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Сферическая	65
7	1	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Регулярная однонаправленная	100
8	2	 Carbon Fiber (395 GPa) Epoxy E-Glass UD 	Плетеная	50

Продолжение табл. 1

Вариани схемынаполнителя (2)элементаСила Р, п921) Carbon Fiber (230 GPa) (230 GPa) PrepregРегулярная однонаправленная501011) Carbon Fiber (290 GPa) (200 GPa) PrepregРегулярная однонаправленная-751012) Epoxy E-Glass UD (230 GPa) PrepregОднонаправленная-751121) Carbon Fiber (290 GPa) (230 GPa) PrepregПлетеная451211) Carbon Fiber (230 GPa) (230 GPa) PrepregСферическая701311) Carbon Fiber (290 GPa) (2 Epoxy E-Glass UDСферическая801421) Carbon Fiber (290 GPa) (230 GPa) PrepregРегулярная одно- направленная-1001311) Carbon Fiber (290 GPa) (230 GPa) PrepregРегулярная одно- направленная-1001421) Carbon Fiber (290 GPa) (230 GPa) PrepregСферическая-601611) Carbon Fiber (290 GPa) (2 Epoxy E-Glass UDПлетеная701721) Carbon Fiber (290 GPa) (2 Epoxy E-Glass UDРегулярная однонаправленная801821) Carbon Fiber (200 GPa) (2 Epoxy E-Glass UDРегулярная однонаправленная-901911) Carbon Fiber (230 GPa) (2 Epoxy E-Glass UDРегулярная однонаправленная-852021) Carbon Fiber (230 GPa) (2 Epoxy E-Glass UDРегулярная однонаправленная-85211) Carbon Fiber (230 GPa) (2 GOPA) PrepregРегулярная однонаправленная-85 <th>Dominant</th> <th>Номер</th> <th>Материал волокон (1) /</th> <th>Тип объемного</th> <th>Cure E. H</th>	Dominant	Номер	Материал волокон (1) /	Тип объемного	Cure E. H
9 2 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Регулярная однонаправленная 50 10 1 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Регулярная однонаправленная -75 11 2 Epoxy E-Glass UD (230 GPa) Prepreg Регулярная однонаправленная -75 11 2 Epoxy E-Glass UD (230 GPa) Prepreg Плетеная 45 12 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая 70 13 1 2) Epoxy E-Glass UD (230 GPa) Prepreg Сферическая 80 14 2 2) Epoxy E-Glass UD (230 GPa) Prepreg Сферическая -100 15 1 1) Carbon Fiber (290 GPa) (2) Epoxy E-Glass UD Сферическая -60 16 1 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (230 GPa) (2) Epoxy E-Glass UD Плетеная 95 18 2 1) Carbon Fiber (230 GPa) (2) Epoxy E-Glass UD Плетеная 95 20 2 Epoxy Carbon UD (230 GPa) Prepreg Плетеная 95 20 2 <td>Бариант</td> <td>схемы</td> <td>наполнителя (2)</td> <td>элемента</td> <td>Сила г, п</td>	Бариант	схемы	наполнителя (2)	элемента	Сила г, п
9 2 2) Epoxy Carbon UD (230 GPa) Prepreg 10 (2) GPa) Prepreg 10 (2) GPa) Prepreg 50 10 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Perулярная однонаправленная -75 11 2 2) Epoxy E-Glass UD Плетеная 45 12 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая 70 13 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Сферическая -100 15 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная одно- направленная -100 16 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD <			1) Carbon Fiber (230 GPa)	Регулярная	
(230 GPa) Prepreg Однопаравленная 10 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная -75 11 2 Epoxy Carbon UD (230 GPa) Prepreg Плетеная 45 12 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая 70 13 1 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Сферическая 80 14 2 Epoxy E-Glass UD (230 GPa) Prepreg Сферическая -100 14 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Регулярная одно- направленная -100 15 1 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Сферическая -60 16 1 1) Carbon Fiber (290 GPa) (2 Epoxy E-Glass UD Плетеная 70 17 2 I) Carbon Fiber (290 GPa) (2 Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (230 GPa) (2 Epoxy E-Glass UD Глетеная 95 20 2 Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (230 GPa) (230 GPa) Pr	9	2	2) Epoxy Carbon UD	олнонаправленная	50
10 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 75 11 2 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная 45 12 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая 70 13 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -60 16 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Сферическая -60 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 95 19 1 Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная -85 20 2 Epoxy Carbon UD (230 GPa) Prepreg Плетеная <td></td> <td></td> <td>(230 GPa) Prepreg</td> <td>однопаправленная</td> <td></td>			(230 GPa) Prepreg	однопаправленная	
10 1 2) Epoxy E-Glass UD однонаправленная 73 11 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная 45 12 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая 70 13 1 1) Carbon Fiber (395 GPa) (2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Регулярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая -60 15 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая -60 16 1 1) Carbon Fiber (290 GPa) (2 Epoxy E-Glass UD Плетеная 80 17 2 1) Carbon Fiber (230 GPa) (2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (30 GPa) (2) Epoxy E-Glass UD Плетеная 95 19 1 1) Carbon Fiber (230 GPa) (2) Epoxy E-Glass UD Плетеная -85 20 2 1) Carbon Fiber (230 GPa) (2) Epoxy E-Glass UD Плетеная -85	10	1	1) Carbon Fiber (290 GPa)	Регулярная	75
11 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная 45 12 1 1) Carbon Fiber (300 GPa) (230 GPa) Prepreg Сферическая 70 13 1 1) Carbon Fiber (395 GPa) (2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Сферическая 80 14 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Регулярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая -60 16 1 1) Carbon Fiber (290 GPa) (2 Epoxy E-Glass UD Глетеная 70 17 2 1) Carbon Fiber (290 GPa) (2 Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (200 GPa) (2 Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (230 GPa) (2 Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) (2 Epoxy E-Glass UD Плетеная -85 20 2 1) Carbon Fiber (200 GPa) (230 GPa) Prepreg Плетеная -85	10	1	2) Epoxy E-Glass UD	однонаправленная	-75
11 2 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная 45 12 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая 70 13 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Сферическая 80 14 2 Epoxy E-Glass UD Сферическая 80 14 2 D Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Регулярная одно- направленная -100 15 1 D Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Сферическая -60 16 1 D Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 D Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 D Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1 Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 20 Epoxy E-Glass UD Плетеная -90 -85 21 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная -85 21 2			1) Carbon Fiber (290 GPa)		
(230 GPa) Prepreg Сферическая 70 12 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая 70 13 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Регулярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -60 16 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная одно- направленная 80 18 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1 Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 20 Epoxy Carbon UD (230 GPa) Prepreg Плетеная -85 21 2 1) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная 70 22 <t< td=""><td>11</td><td>2</td><td>2) Epoxy Carbon UD</td><td>Плетеная</td><td>45</td></t<>	11	2	2) Epoxy Carbon UD	Плетеная	45
12 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая 70 13 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Сферическая 80 14 2 2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Регулярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -60 16 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однопаправленная 80 18 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная -85 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная -70 21 2 1) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg <			(230 GPa) Prepreg		
12 1 2) Epoxy E-Glass UD Сферическая 70 13 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Сферическая 80 14 2 2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Peryлярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -60 16 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 21 2 1) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная <td< td=""><td>10</td><td>1</td><td>1) Carbon Fiber (230 GPa)</td><td>Classes</td><td>70</td></td<>	10	1	1) Carbon Fiber (230 GPa)	Classes	70
13 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Perулярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Cферическая -60 16 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная -85 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная 70 21 2 1) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная -50 23 2	12	1	2) Epoxy E-Glass UD	Сферическая	70
13 1 2) Epoxy E-Glass UD Сферическая 80 14 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Peryлярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Cферическая -60 16 1 1) Carbon Fiber (290 GPa) (2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) (2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (300 GPa) (2) Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (395 GPa) (230 GPa) Prepreg Плетеная 95 20 2 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Регулярная однонаправленная -85 20 2 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Плетеная 95 21 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная -50 22 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Плетеная -50	12	1	1) Carbon Fiber (395 GPa)	C1	20
14 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Регулярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Сферическая -60 15 1 1) Carbon Fiber (230 GPa) (2) Epoxy E-Glass UD Сферическая -60 16 1 1) Carbon Fiber (290 GPa) (2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) (2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (230 GPa) (2) Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (395 GPa) (2) Epoxy E-Glass UD Плетеная 95 20 2 2 Epoxy Carbon UD (230 GPa) Prepreg Плетеная 95 21 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Плетеная 70 23 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная -50 23 2 1) Carbon Fiber (290 GPa) (2 Epoxy E-Glass	15	1	2) Epoxy E-Glass UD	Сферическая	80
14 2 2) Epoxy Carbon UD (230 GPa) Prepreg Регулярная одно- направленная -100 15 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -60 16 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Регулярная однонаправленная -85 21 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Плетеная -50 22 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Плетеная -50 23 2 1) Carbon Fiber (290			1) Carbon Fiber (290 GPa)	D	
151(230 GPa) PrepregНаправленная1511) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDСферическая-601611) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDПлетеная701721) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная801821) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDСферическая-901911) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная-852021) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная-852121) Carbon Fiber (290 GPa) (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) (230 GPa) PrepregПлетеная-502321) Carbon Fiber (290 GPa) (230 GPa) PrepregПлетеная-50	14	2	2) Epoxy Carbon UD	Регулярная одно-	-100
1511) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDСферическая601611) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDПлетеная701721) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная801821) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDСферическая901911) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная852021) Carbon Fiber (230 GPa) (230 GPa) PrepregРегулярная однонаправленная852122) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) (230 GPa) PrepregПлетеная-502211) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная-50			(230 GPa) Prepreg	направленная	
15 1 2) Epoxy E-Glass UD Сферическая -60 16 1 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Плетеная 70 17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Регулярная однонаправленная -85 21 2 2) Epoxy Carbon UD (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная 70 22 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная -50 23 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 65	15	1	1) Carbon Fiber (230 GPa)	Chammanna	60
1611) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDПлетеная701721) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная801821) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDСферическая-901911) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная-852021) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная-852122) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) (230 GPa) PrepregПлетеная702321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	15	1	2) Epoxy E-Glass UD	Сферическая	-00
1012) Epoxy E-Glass UDПлетеная701721) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная801821) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDСферическая-901911) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная952021) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная-852122) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) (230 GPa) PrepregПлетеная702321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	16	1	1) Carbon Fiber (290 GPa)	Плотоноя	70
17 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 80 18 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Сферическая -90 19 1 1) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UD Плетеная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 95 20 2 1) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) Prepreg Регулярная однонаправленная -85 21 2 1) Carbon Fiber (290 GPa) (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Плетеная 70 22 1 1) Carbon Fiber (230 GPa) (230 GPa) Prepreg Плетеная -50 23 2 1) Carbon Fiber (290 GPa) (2) Epoxy E-Glass UD Регулярная однонаправленная 65	10	1	2) Epoxy E-Glass UD	Плетеная	70
1722) Epoxy E-Glass UDоднонаправленная301821) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDСферическая-901911) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная-852121) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702121) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	17	2	1) Carbon Fiber (290 GPa)	Регулярная	80
1821) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDСферическая-901911) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная-852121) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702121) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702121) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	17	2	2) Epoxy E-Glass UD	однонаправленная	80
1822) Epoxy E-Glass UDСферическая-901911) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная-852122) Epoxy Carbon UD (230 GPa) PrepregПлетеная702121) Carbon Fiber (290 GPa) (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) (230 GPa) PrepregПлетеная-5022211) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	10	2	1) Carbon Fiber (230 GPa)	Chanunaawag	00
1911) Carbon Fiber (395 GPa) 2) Epoxy E-Glass UDПлетеная952021) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная-852121) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702121) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	10	2	2) Epoxy E-Glass UD	Сферическая	-90
1912) Epoxy E-Glass UDПлетеная932021) Carbon Fiber (230 GPa) (230 GPa) PrepregРегулярная однонаправленная-852121) Carbon Fiber (290 GPa) (230 GPa) PrepregПлетеная702122) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) (230 GPa) PrepregПлетеная-502211) Carbon Fiber (290 GPa) (230 GPa) PrepregПлетеная-502321) Carbon Fiber (290 GPa) (2) Epoxy E-Glass UDРегулярная однонаправленная65	10	1	1) Carbon Fiber (395 GPa)	Плотоноя	05
2021) Carbon Fiber (230 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная-852121) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	19	1	2) Epoxy E-Glass UD	Плетеная	95
2022) Epoxy Carbon UD (230 GPa) PrepregРегулярная однонаправленная852121) Carbon Fiber (290 GPa) (230 GPa) PrepregПлетеная702122) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) (2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) (2) Epoxy E-Glass UDРегулярная однонаправленная65			1) Carbon Fiber (230 GPa)	Donungouog	
(230 GPa) PrepregОднонаправленная2121) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	20	2	2) Epoxy Carbon UD	гегулярная	-85
211) Carbon Fiber (290 GPa) 2) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65			(230 GPa) Prepreg	однонаправленная	
2122) Epoxy Carbon UD (230 GPa) PrepregПлетеная702211) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65			1) Carbon Fiber (290 GPa)		
(230 GPa) PrepregПлетеная2211) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UDПлетеная2321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	21	2	2) Epoxy Carbon UD	Плетеная	70
22 1 1) Carbon Fiber (230 GPa) 2) Epoxy E-Glass UD Плетеная -50 23 2 1) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UD Регулярная однонаправленная 65			(230 GPa) Prepreg		
2212) Epoxy E-Glass UDПлетенал-502321) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65	22	1	1) Carbon Fiber (230 GPa)	Плетеная	-50
231) Carbon Fiber (290 GPa) 2) Epoxy E-Glass UDРегулярная однонаправленная65		I	2) Epoxy E-Glass UD	Плетеная	-30
23 2) Epoxy E-Glass UD однонаправленная 65	22	2	1) Carbon Fiber (290 GPa)	Регулярная	(5
	23	2	2) Epoxy E-Glass UD	однонаправленная	63

Окончание табл. 1

Вариант	Номер схемы	Материал волокон (1) / наполнителя (2)	Тип объемного элемента	Сила F, H
24	1	 Carbon Fiber (290 GPa) Epoxy E-Glass UD 	Сферическая	100
25	1	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Сферическая	-75
26	2	 Carbon Fiber (395 GPa) Epoxy E-Glass UD 	Плетеная	85
27	2	 Carbon Fiber (290 GPa) Epoxy Carbon UD (230 GPa) Prepreg 	Регулярная однонаправленная	95
28	1	 Carbon Fiber (230 GPa) Epoxy E-Glass UD 	Плетеная	-50
29	2	 Carbon Fiber (395 GPa) Epoxy E-Glass UD 	Регулярная однонаправленная	-60
30	2	 Carbon Fiber (290 GPa) Epoxy E-Glass UD 	Сферическая	70

Порядок выполнения лабораторной работы

1. Запускаем ANSYS Workbench и добавляем несколько модулей: Material Designer, ACP (Pre) и Static Structural (рис. 3).

Рис. 3. Добавление модулей

2. Дважды нажимаем ЛКМ на блок *Engineering Data* (1), после чего жмем на *Engineering Data Sources* (2). Выбираем библиотеку *Composite Materials* (3) и подключаем материалы согласно своему варианту (4). После этого можно закрыть *Engineering Data* (5) (рис. 4).

T							
	Α	-	В		-	С	
1 🞲 Material	Designer	1	ACP (Pre)		1	🚾 Transient Structural	
2 🦪 Engineer	ing Data 🗸 🚶 丨	2	🥏 Engineering Data	🗸 🔺	2	🥏 Engineering Data	 .
3 🞲 Material	Designer ᄙ	3	🥪 Geometry	? 🖌	3	🥪 Geometry	?.
Material	Designer	4	Model	? 🖌	4	🖗 Model	?
		5	Kee Setup	?	5	🍓 Setup	2
			ACP (Pre)		6	Gillion	?
					7	🥩 Results	?

a

🚾 Unsaved Project - Workbench												— C		×
<u>File Edit View T</u> ools <u>U</u> nits Extensi	ions Jo	bs <u>H</u> elp												
🎦 💕 🛃 📐 📋 Project 🦪 A2:E	ngineerin	g Data 🗙 5												
🍸 Filter Engineering Data 🎬 Engineering Data	Sources	2 —												
Toolbox 🔻 🕂 🗙	Engineer	ing Data Sources							→ ậ	x	Table of Properties Row	2: Density	•	φ×
∀iscoelastic		А	в		с			D		^	A			
Shape Memory Alloy	1	Data Source	1	Loc	ation			Descriptio	n		1 Density (kg m	^-3) 🔎		
E Geomechanical	6	🕮 Geomechanical Materials					General use	material samples fo	r use with		2 2000			
🗈 Damage						-	geomechani	ical models.						
Cohesive Zone Coh	7	Composite Materials				8	Material san	nples specific for con	mposite structures.					
Fracture Criteria	8	General Non-linear Materials					General use analyses.	e material samples fo	r use in non-linear					
Crack Growth Laws	9	Exolicit Materials			-		Material san	noles for use in an e	xolicit analysis.					
Thermal	10	Hvoerelastic Materials			_		Material stre	ess-strain data sam	ales for curve fitting					
Thermopower	10				_	-	B-H Curve s	amples specific for i	use in a magnetic	-				
Linear "Soft" Magnetic Material	11	Magnetic B-H Curves				2	analysis.			×				
Linear "Hard" Magnetic Material	Outline of	of Composite Materials			_				~ џ	×				
Nonlinear "Soft" Magnetic Material		A		В	С		D		E	^				
Nonlinear "Hard" Magnetic Material	1	Contents of Composite Materials	J.	Ad	d	5	Source	De	scription		Chart: No data		-	д х
Electric	3	📎 Carbon Fiber (230 GPa)		4	6	e (Composite_M	Fibers only						
Brittle/Granular	4	🗞 Carbon Fiber (290 GPa)	+	÷	، ک	2 (Composite_M	Fibers only						
Equations of State	5	Scarbon Fiber (395 GPa)	-	4	6	2	Composite_M	Fibers only						
Porosity	6	Sec. E-Glass		4	6	2	Composite_M	Fibers only						
E Failure	7	Epoxy Carbon UD (230 GPa) Prepreg		-	6	-	Composite M							
Nonlinear	8	Senoxy Carbon UD (230 GPa) Wet	_	-	6	-	Composite M							
Eldsto-Plastic Denavlor	-	Senoxy Carbon UD (395 GPa) Prepren		-	6		Composite M							
Composite	10	Enoxy Carbon Woven (23) GPa) Pressen			6	= `	omposite M							
E Eormino Plasticty	10	Enoxy Carbon Woven (230 GPs) Highey			6		Composite_M							
E Foams	11	Epoxy Carbon Woven (200 GPa) Wet			6	= `	Composite_M			-				
Eulerian	12	 Epoxy Carbon Woven (395 GPa) Prepreg Epoxy Carbon Woven (395 GPa) Prepreg 	7			= '	.omposite_M	1		-				
E Concrete	13	Epoxy E-Glass UD	4			= 0	.omposite_M	1		×				
E Custom Material Models	Propertie	es of Outline Row 13: Epoxy E-Glass UD							→ ậ	x				
		А						В	с	^				
If View All / Customize		n .								Y	L			_
Ready								Job Monitor	No DPS Connection	n (Beta	a) Show Progress	Show 0 1	Message	:S:

б

Рис. 4. Выбор материала волокна и наполнителя

3. В первом модуле дважды нажимаем ЛКМ на Material Designer.

4. В верхней панели инструментов выбираем тип объемного элемента модифицированной микроструктуры согласно своему варианту (табл. 1).

5. В появившейся слева панели присваиваем материал матрицы/ наполнителя (1) и частицы/волокон (2) (рис. 5), после чего применяем изменения (3).

Рис. 5. Присвоение материалов

6. Для создания геометрии объемного элемента (рис. 6) нажимаем ЛКМ на *Geometry* (1).

Рис. 6. Создание геометрии объемного элемента

После этого в левой панели настроек отобразятся настройки геометрии объемного элемента (2) (в зависимости от типа, выбранного объемного элемента настройки могут быть различны). Нажимаем на галочку (3) и на рабочем пространстве появится трехмерная модель сгенерированного объемного элемента (4).

7. Сгенерируем сеточную модель объемного элемента (рис. 7). Нажимаем ЛКМ на *Mesh* (1) и задаем максимальный размер сеточного объемного элемента (2). Нажимаем на галочку (3) и видим на экране сгенерированную сетку (4) объемного элемента.

Рис. 7. Создание сетки объемного элемента

8. Нажимаем ЛКМ на *Settings* (1). На панели слева (2) можно выставить интересующие настройки анализа объемного элемента (рис. 8), но в нашем случае они остаются без изменения. Нажимаем на галочку (3) и видим системное окно, предупреждающее о результатах проведенного анализа (4).

Рис. 8. Выбор характеристик частицы

9. Присваиваем название созданному объемному элементу (рис. 9). Для этого нажимаем ПКМ на *Analyses* (1) – *Constant Material* (2), вводим название материала (3) и нажимаем на галочку (4). Закрываем окно *Material Designer*.

Рис. 9. Создание сетки объемного элемента

10. Создаем связь между первым и вторым модулями *Material Designer* для присвоения созданного нами композитного материала к анализируемой геометрии через второй блок (рис. 10):

10.1. В окне ANSYS Workbench нажимаем ПКМ на Material Designer
(1) и выбираем Update Update Для обновления проекта композитного материала.

10.2. Зажимаем ЛКМ *Material Designer* (1) и перетаскиваем его к *Engineering Data* (2).

10.3. Нажимаем ПКМ на *Engineering Data* (2) и жмем *Update*.

esh P	1 Project 🗲 Update Project ACT Start Page																
џ	×	Project	Sch	nemat	tic												
	^																
			▼		А			▼		В			▼		С		
			1	۲	Material Designer			1	ACP	ACP (Pre)			1	2	Transient Structural		
			2	0	Engineering Data	\checkmark		2	٢	Engineering Data	✓ ⊿	2	2	٢	Engineering Data	~	4
V)			3	۲	Material Designer	\checkmark		3	Θ	Geometry	? 🖌		3	P	Geometry	?	4
			1		Material Designer	1		4	۲	Model	? 🖌		4	۲	Model	7	4
								5	ACP	Setup	7		5	٢	Setup	7	4
										ACP (Pre)			6	G	Solution	7	4
													7	۲	Results	7	4
															Transient Structural		

Рис. 10. Создание связи

11. Импортируем геометрию:

11.1. Дважды нажимаем ЛКМ на блок *Geometry* у модуля ACP (Pre).

11.2. В появившемся окне нажимаем *File – Open*.

11.3. Для того чтобы найти созданную геометрию, переходим в папку с ней и выбираем отображение всех форматов – *All Files (*.*)*. Нажимаем на созданную геометрию с расширением «.x_t» и жмем кнопку *Открыть*. Импортированная геометрия показана на рис. 11.

Рис. 11. Импорт геометрии

11.4. После этого окно геометрии можно закрыть.

12. Приступаем к созданию сетки:

12.1. Дважды нажимаем ЛКМ на блок *Model* у модуля *ACP* (*Pre*).

12.2. В открывшемся окне раскрываем вкладку *Geometry* (1), выделяем геометрию (2) и задаём толщину (3) 0,5 мм (рис. 12).

Рис. 12. Задание толщины оболочки

12.3. Задаем настройки сеточной модели:

– жмем ПКМ на *Mesh – Insert – Method*, выделяем геометрию (1) и выбираем метод (2) – *Multizone Quad/Tri* (рис. 13);

Рис. 13. Задание настроек сетки

– жмем ПКМ на *Mesh – Insert – Sizing*, выделяем всю геометрию (1) и задаем величину ячеек 2 мм (2) (рис. 14).

Рис. 14. Задание настроек сетки

12.4. Нажимаем ПКМ на *Mesh* и выбираем *Generate mesh*. Готовая сеточная модель представлена на рис. 15. Закрываем окно блока *Model*.

Рис. 15. Генерация сеточной модели

12.5. Присваиваем имена ребрам, к которым будут прикладываться силы. Выделяем каждую область ЛКМ, после чего нажимаем на неё ПКМ (1) и выбираем *Create Named Selection...* (2) (рис. 16). В итоге данные ребра будут иметь персональные названия (3).

uplicate Q So	olve Insert	Update Generate	Surface Source/Ta Mesh	rget Metho	d Sizing	Face Meshing	Mesh Copy	Match Contro	الم Ketine مر ا Pinch الم	ment ini	Gasket Mesh Grou	P Edit*
tline	sively			100	$\gamma = i^{\dagger}$			Calant	h Madaa			🛋 🕋 x.y.z
Marra	- Court Out			Ø7 🗄 🕅	J * 😯		x a	Select	K Wode*			
Project* G Model (B4 	etry ACP-Pre\Surface ials iinate Systems MultiZone Quad/ Body Sizing	1 Tri Method			1				Insert Show			Þ
🖃 🗠 Name	d Selections						REAL	87 () 7	G0 10			,
	Force			¥ V	Hide Body			F9				
						E		H 💡	Filter Tree	Based On Vi	sible Bodies	
								1 To	Suppress E	Body		
tails of "Mesh" 🗠		▼ 4 🗆 ×	tur		_				Suppress E	dge (Beta)		
Display										 		
Display Style	Use Geometry	Setting		4					isometric v	lew		
)efaults					-			*	Set			
hysics Preference	Mechanical					0.00		2	Restore De	fault		н
lement Order	Program Cont	rolled				·		0	Zoom To Fi	it		F7
Element Size	Default (6,829	7 mm)						۲	Zoom To S	election		Z
lizing			Messages						Incore To C	The law and		Chilly C
Juality			Text						image to C	Ippoard		cm+c
nflation			ic.e.						Cursor Mo	de		•
satch Connection	5								View			•
tatistics								40	Look At			
lausucs									Crasta Con	ardinata Sud	-	
							-	ŝ	Create Nan	ned Selectio	n	N
tails Costion Dia							4		create Man			
tails Section Pla	tails Section Planes		0					Ø	Select All			Create Nan
ate a Named Sele	ction for the se	elected geometry en	ti 🛛 🔑 No Messages	8 Edges Se	elected: L	ength = 15	52,26 mr	n 📷	Select Mes	h by ID		

Рис. 16. Присвоение имен для ребер

12.6. Нажимаем ПКМ на *Mesh*, выбираем *Update* 🕺 и после этого окно *Mechanical* можно закрыть.

13. Настраиваем слои созданных композитных материалов:

13.1. В окне *Workbench* дважды нажимаем на *Setup* в блоке *ACP (Pre)*. После этого перед нами появится окно, представленное на рис. 17.

Рис. 17. Окно ANSYS Composite PrepPost

13.2. Сразу изменяем единицы измерения на мм. Для этого нажимаем на *Units* (1) и выбираем *MPA* (*mm,t,s,N,C,USD*) (2) (рис. 18).

Рис. 18. Изменение единиц измерения

13.3. Создаем слой волокон композитного материала (рис. 19):

– для этого раскрываем раздел *Material Data* (1), нажимаем ПКМ на *Fabrics* (2) и выбираем *Create Fabric*... (3);

– выбираем материал (4), задаем толщину 0.5 мм (5) и жмем *Apply* (6). Если на экране появится окно с предупреждением, то его можно закрыть. После этого окно можно закрыть (7).

🔍 Search	s e	1	Scene. I	
🗐 ACP - Pre		٦Ì	🧲 💽 📋) 🛃
🗄 ····· 🍓 Models			ACP Model	
🛓 🗰 🎝 🗛 🖕			04.10.2021 1	2:14
📋 🚟 Material Data			Thickness	
🕂 🚽 🕂 🕂 🕂 🕂			Element-Wis	е
2 🚟 Fabrid	Create Fabric	3		
🥣 Stack	Paste			
🕣 Sub L				
👜 🛶 🍯 Element Se	Sort			
🥙 Edge Sets	Europeter ESACom		41	
🛓 🔤 📴 Geometry	Export to ESACon		/IL	
🛓 👌 Rosettes			0,66667	
🖑 Look-Up Tables			0,55556	
😽 Selection Rules			0,44444	
🌌 Oriented Selecti	on Sets		0,33333	

а

😂 Fabric Properties	-		\times
Name: Fabric.1			
ID: Fabric.1			
General Analysis Solid Model Opt. Draping			
General			
Material: mat_1 4			~
Thickness: 0.5 5			
Price/Area: 0.0			
Weight/Area: -1.0			
Post-Processing			
Ignore for Post-Processing:			
7	6		
ОК Арг	bly	Can	cel

Рис. 19. Создание слоя волокон

13.4. Создаем ось координат. Нажимаем ПКМ на *Rosettes*, выбираем *Create Rosette*... и жмем *Apply*. После этого окно можно закрыть.

13.5. Создаем ориентированный блок (рис. 20):

– нажимаем ПКМ на *Rosettes* (1) и выбираем *Create Rosette*...(2);

– выбираем элемент/геометрию (выбираем его в дереве построения в разделе *Element Sets*) (3), настраиваем ориентацию (4), выбираем созданную ось координат (5) и жмем *Apply* (6). После этого окно можно закрыть (7).

Рис. 20. Создание ориентированного блока

13.6. Создаем модельную группу (объединение ориентированного элемента и пакета слоев) (рис. 21):

– нажимаем ПКМ на *Modeling Groups* (1) и выбираем *Create Modeling Group*... (2). В появившемся окне жмем *Ok* (3);

- нажимаем ПКМ на *ModelingGroups.1* (4) и выбираем *Create Ply...* (5);

– выбираем первый ориентированный блок (6) и слой композитного материала и жмем *Apply* (8). После этого окно можно закрыть (9).

a

Рис. 21. Создание модельной группы (начало)

Рис. 21. Создание модельной группы (окончание)

13.7. Включаем отображение сетки (1) и направление волокон (2) в верхней панели (рис. 22). Выбрав модельную группу (3), видим зеленые стрелочки, показывающие направление волокон (4).

Рис. 22. Отображение направления волокон

13.8. Создаем твердотельную модель (рис. 23):

– нажимаем ПКМ на Solid Models (1) и выбираем Create Solid Model... (2);

– выбираем элемент (нажимаем на область элемента и выбираем его в дереве построения) (3) и жмем *Apply* (4). После этого окно можно закрыть (5).

а

Рис. 23. Создание твердотельной модели

13.9. Закрываем окно ANSYS Composite PrepPost.

14. Зажимаем ЛКМ блок Setup (1) в модуле ACP (Pre) и перетаскиваем его на блок Model (2) в модуле Static Structural. После этого появляется окно с двумя вариантами (рис. 24): первый переместит твердотельную модель (есть возможность анализировать каждый слой выбранного сегмента, но может понадобится повторно создать контактные области), а второй переместит тонкостенную оболочку (нет возможности анализировать каждый слой отдельно). После выбора первого варианта нажимаем ПКМ на Setup (1) в модуле ACP (Pre) и выбираем Update.

Рис. 24. Импорт данных в Static Structural

15. Приступаем к подготовке и проведению расчета:

15.1. В окне *Workbench* дважды нажимаем на *Model* в блоке *Transient Structural*. После этого перед нами появится окно, представленное на рис. 25.

Рис. 25. Окно Mechanical

15.2. Задаем граничные условия:

– для проведения временного рачёта указываем исследуемый временной промежуток (3 с), который будет разбит на три интервала, каждый из которых будет иметь свой временной шаг (рис. 26). Для этого указываем количество интервалов – 3 (1) и, изменяя число от 1 до 3 (2), можем переключаться между ними. На каждом интервале отключаем автоматический временной шаг – *off* (3).

Далее на первом интервале выставляем значение промежуточных временных шагов – 0,1 с, а на втором и третьем – 0,5 с. Примечание: чтобы увидеть настройки второго и третьего интервалов, необходимо ввести их номер напротив *Current Step Number* (2);

Рис. 26. Настройка параметров времени

– чтобы зафиксировать геометрию в пространстве, нажимаем ПКМ на *Transient* (1) и выбираем *Insert* (2) – *Fixed Support* (3) (рис. 27, *a*). После чего указываем нужные ребра (4) и нажимаем *Apply* (5) (рис. 27, *б*).

а

Рис. 27. Фиксация геометрии в пространстве

– чтобы задать силу, нажимаем ПКМ на *Transient* (1) и выбираем *Insert*(2) – *Force* (3) (рис. 28, *a*). После чего указываем нужные ребра (4), нажимаем *Apply* (5), изменяем способ задания нагрузки на *Components* (6)

и указываем значение силы на 2 с по оси Y (7) (рис. 28, б). Примечание: будет значение силы положительным или отрицательным, зависит от варианта.

а

Рис. 28. Задание давления

15.3. Выбираем параметры, которые будут рассчитываться в следующей последовательности:

нажимаем ПКМ на Solution (1), выбираем Insert (2) – Deformation
(3) – Total (4) (рис. 29, а);

– нажимаем ПКМ на *Solution* (1), выбираем *Insert* (2) – *Stress* (3) – *Equivalent (von-Mises)* (4) (рис. 29, б). После чего нажимаем на желтую область напротив **Ply** (5) и указываем необходимую модельную группу (6).

а

Рис. 29. Выбор результатов

15.4. Запускаем расчет, нажав кнопку *Solve* (1) (рис. 30). Примечание: при запуске расчета может появиться предупреждение о том, что модельная группа имеет слишком длинное имя пути, но на расчет это не повлияет.

Рис. 30. Запуск расчета

15.5. Чтобы просмотреть, как со временем изменяются перемещение и напряжение на оболочке, выбираем интересующую характеристику (1) и нажимаем на кнопку *Play* (2) (рис. 31). Для прекращения воспроизведения анимации нажимаем кнопку *Stop*.

Рис. 31. Запуск анимации

15.6. Перед сохранением результатов расчета отключаем отображения сетки (рис. 32). Для этого в разделе *Display* (1) выбираем *Edges* (2) – *Show Underformed WireFrame* (3). После этого мы увидим модель без сетки.

Рис. 32. Скрытие сетки

15.7. Сохраняем результаты расчета для Полных перемещений (*Total Deformation*) и Эквивалентных напряжений (*Equivalent Stress*) через 1 и 2 с. Для этого переходим во вкладку интересующей характеристики (1), нажимаем ПКМ на интересующий нас интервал «1» (2) и выбираем *Retrieve This Result* (3) (рис. 33), после чего делаем скриншот.

Рис. 33. Вывод результатов расчета

15.8. Пункт 15.7 повторяем для обеих характеристик через 1 и 2 с (рис. 34). Примечание: обратите внимание на числовые значения в верхнем правом углу. При разных временных интервалах для одной и той же характеристики они отличаются. Это говорит о том, что одинаковый цвет на поверхности оболочки будет иметь разные значения перемещений или напряжения.

Рис. 34. Результаты расчета:

- а полное перемещение через 1 секунду;
- δ полное перемещение через 2 секунды;
- в эквивалентное напряжение через 1 секунду;

г – эквивалентное напряжение через 2 секунды (начало)

Рис. 34. Результаты расчета:

а – полное перемещение через 1 секунду;

б – полное перемещение через 2 секунды;

в – эквивалентное напряжение через 1 секунду;

г – эквивалентное напряжение через 2 секунды (окончание)

15.9. Теперь окно *Mechanical* можно закрыть.

16. В итоге должен получиться проект, имеющий следующую цепочку модулей (рис. 35).

Рис. 35. Готовый проект

17. Сохраняем проект в папку, ранее созданную студентом (названия папки и проекта должны быть на английском языке). Для этого нажимаем *File – Save As... – Сохранить*. Для того чтобы проект можно было копировать без опасений сбить прописанные пути файлов, необходимо создать его архив. Для этого нажимаем *File – Archive... – Сохранить – Archive*.

Содержание отчета

1. Титульный лист.

- 2. Цель работы.
- 3. Описание работы (с исходной схемой и таблицей для своего варианта).
- 4. Этапы построения (со скриншотами этапов).

5. Результаты работы (финальные скриншоты окон ANSYS Workbench, Material Designer, ACP (Pre) – Geometry, ACP (Pre) – Model, ACP (Pre) – Setup; Mechanical – граничные условия, Mechanical – результаты).

6. Вывод.

Контрольные вопросы

- 1. Что такое сеточная модель?
- 2. Краткая характеристика САЕ-систем. Примеры.
- 3. Для чего нужен Material Designer?
- 4. В каком блоке происходит настройка сеточной модели?
- 5. Как создавать связь между модулями?
- 6. Как приложить силу к ребру/поверхности?
- 7. Как установить временной шаг для динамического расчета?
- 8. Основные этапы выполнения работы.

Лабораторная работа № 3 ТЕПЛОВОЙ АНАЛИЗ ОБОЛОЧКИ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Цель работы

Изучение основных этапов проведения статического теплового анализа в среде *ANSYS Workbench*. Приобретение студентами навыков в использовании программного инструмента *ANSYS Workbench – Steady-State Thermal* при проведении теплового анализа оболочки из композиционных материалов, созданных с помощью *Material Designer* и *ACP* (*Pre*).

Описание работы

Используя модули *Material Designer*, *ACP* (*Pre*) и *Steady-State Thermal*, необходимо рассчитать распределение температуры по оболочке (*Thermal*) из композиционных материалов (рис. 1–2). Известны: материал объемного элемента, два типа объемных элементов и участки с температурой T_1 и T_2 (табл. 1).

Рис. 1. Схема № 1

Рис. 2. Схема № 2

Таблица 1

Исходные данные

Вариант	Номер схемы	Тип объемного элемента	Т ₁ , °С	T ₂ , °C
1	1	 Регулярная однонаправленная Сферическая 	50	10
2	2	 Сферическая Плетеная 	55	20
3	1	 Плетеная Регулярная однонаправленная 	65	40
4	1	 Сферическая Регулярная однонаправленная 	70	60
5	2	 Регулярная однонаправленная Плетеная 	40	50
6	2	 Сферическая Регулярная однонаправленная 	110	30
7	1	 Плетеная Регулярная однонаправленная 	45	70
8	2	– Сферическая – Плетеная	50	60
9	1	 Регулярная однонаправленная Сферическая 	60	85

Вариант	Номер схемы	Тип объемного элемента	T ₁ , °C	T ₂ , °C
10	1	 Сферическая Регулярная однонаправленная 	55	40
11	2	 Плетеная Регулярная однонаправленная 	40	30
12	1	– Сферическая – Плетеная	30	20
13	1	 – Регулярная однонаправленная – Сферическая 	20	5
14	2	 Сферическая Регулярная однонаправленная 	60	50
15	2	 Плетеная Сферическая 	70	45
16	1	 Сферическая Регулярная однонаправленная 	80	35
17	2	 Регулярная однонаправленная Плетеная 	90	55
18	2	– Сферическая – Плетеная	65	70
19	1	 – Плетеная – Сферическая 	75	65
20	2	 Сферическая Регулярная однонаправленная 	80	30
21	1	 Регулярная однонаправленная Сферическая 	60	20
22	1	– Сферическая – Плетеная	50	10
23	2	 Плетеная Регулярная однонаправленная 	40	25
24	1	– Сферическая – Плетеная	55	45
25	2	 Регулярная однонаправленная Сферическая 	75	10
26	2	– Сферическая – Плетеная	35	65
27	1	– Плетеная – Сферическая	45	80

Окончание табл. 1

Вариант	Номер	Тип объемного элемента	T ₁ , °C	T ₂ . °C		
Dupituitt	схемы		11, 0	12, 0		
28	2	– Сферическая	80	20		
20	2	– Плетеная	80	30		
20	2	– Регулярная однонаправленная	00	25		
29	2	– Сферическая	90	55		
20	1	– Сферическая	55	40		
30	1	– Плетеная	55	40		

Порядок выполнения лабораторной работы

1. Запускаем ANSYS Workbench и добавляем несколько модулей: Material Designer, ACP (Pre) и Steady-State Thermal (рис. 3).

Рис. 3. Добавление модулей

2. Подготавливаем материал волокна и наполнителя:

2.1. Дважды нажимаем ЛКМ на блок Engineering Data (1), после чего жмем на Engineering Data Sources (2). Выбираем библиотеку Composite Materials (3) и подключаем материалы волокна – Carbon Fiber (290 GPa) и наполнителя – Epoxy E-Glass UD (4). Нажимаем на Engineering Data Sources (2) еще раз, чтобы вернуться к используемым в проекте материалам (рис. 4, a, δ).

2.2. Добавляем коэффициент теплового расширения и теплопроводности для наполнителя и волокна:

– для волокна (5) коэффициент теплового расширения *Isotropic Secant Coefficient of Thermal Expansion* (6) будет равен 1.10^{-6} 1/°C (8), а коэффициент теплопроводности *Isotropic Thermal Conductivity* (7) – 0,03 BT/(м.°C) (9);

– для наполнителя (10) коэффициент теплового расширения *Isotropic Secant Coefficient of Thermal Expansion* (11) будет равен 5·10⁻⁵ 1/°C (13), а коэффициент теплопроводности *Isotropic Thermal Conductivity* (12) – 0,2 Bт/(м·°C) (14).

che	matic													
•	A			-		В			i 1	•		с		
1 (휳 Material Designer			1	ACP	ACP (Pre)			(i	1		Steady-State Thermal		
2 🤅	🎐 Engineering Data	× .	1	2	٢	Engineering Data	~	4	1 [2	٢	Engineering Data	~	
3 (🐉 Material Designer	2		3	\bigcirc	Geometry	?	4		3	\bigcirc	Geometry	?	
	Material Designer			4	6	Model	7	4		4	6	Model	?	
				5	ACP	Setup	?		1 1	5	Ċ,	Setup	?	
						ACP (Pre)				6	(î	Solution	7	
										7	@	Results	?	
												Steady-State Thermal		

1
u
vv

Toobox 💌 🕯	X	Enginee								* 9	×	Table		•=tv ▼ ₽
Viscoelastic	^		A	в		с			D		^		A	
Shape Memory Alloy		1	Data Source			ocation	n	Description				1	Density (kg m^-3)	A .
Geomechanical		6	Geomethanical Materials		n 8		General use material samples for use with				2	2000		
🖽 Damage		- I		-			100	geomechani	cal models.		-11			
E Cohesive Zone		7	Composite Materials		<u></u>		Material samples specific for composite structures.			-11				
Fracture Criteria		8	General Non-linear Materials				General use material samples for use in non-linear analyses.							
Crack Growth Laws		9	Explicit Materials	23	1 2			Material samples for use in an explicit analysis						
Thermal		10	Humerelastic Materials	F	1 20			Material stress-strain data samples for come fitting						
Thermopower				-	-		100	B-H Curve s	use in a magnetic	-				
Linear "Soft" Magnetic Material		11	Magnetic B-H Curves				1	analysis.			14			
E Linear "Hard" Magnetic Material		Outine	of Composite Materials							~ 0	×			
Nonlinear "Soft" Magnetic Material			A		B	C		D		E	^			
Nonlinear "Hard" Magnetic Material		1	Contents of Composite Materials	J.	Add 4			Source	Description			Chart	: No data	* 9
Electric		3	Section Fiber (230 GPa)		(A) (B)		Composite_M. Fibers only							
Brittle/Granular	4	4	Scarbon Fiber (290 GPa)	4	14	10 4		Composite_M	4 Fibers only					
Equations of State	4	5	Carbon Fiber (395 GPa)		10		020	Composite M	Fibers only		11			
Porosity		6	Se E-Glass		1.5		629	Composite M	Fibers only					
E Failure	4	7	Se Fooxy Carbon LID (230 GPa) Pressen	-	100		GID	Composite M			1			
E Nonlinear	4		Concerning Carbon (ID) (23) (Ra) Wet	-			629	Composite M			10			
Elasto-Plastic Behavior	-	0	Contraction (Contraction (Contraction)	-	000		020	Composite M]		1			
E Perforated Media	4	9	Chocky Carbon OD (195 GPa) Prepreg	-	8	-	-	Composite Ja			-			
E Composte		10	cpoxy carbon Woven (230 GPa) Prepreg	_	00	-	-	Composite_M	1		-			
E Forming Plasticity	4	11	Epoxy Carbon Woven (230 GPa) Wet	_	100	-	-	Composite_M						
E Posts		12	Epoxy Carbon Woven (395 GPa) Prepreg		10	-	-	Composite_M						
E Casarata	-	13	Sectory E-Glass UD	4	199	9		Composite_M			~			
El Contrete El Custom Material Models		Propert	es of Outline Row 13: Epoxy E-Glass UD						-	- D	×			
El Custom Platenai Modes	Y	manual	A					1	8	6	-			
View Al / Customiz	e	-					_	-		10.4	Y			
Ready									Job Monitor	No DPS Connection	n (Be	ta) =	Show Progress	ow 0 Messages

Рис. 4. Выбор материала волокна и наполнителя (начало)

Y Fiter Engineering Data 🏭 Engineering Data Sources												
Toolbox 🔻 👎	×	Outline	utine of Schematic A2: Engineering Data									×
Physical Properties	^			A	D	E						
92 Density		1		Contents of Engineering Data	6	Source	e Description					
🔀 Isotropic Secant Coefficient of Therma	6	2	-	Material								
Orthotropic Secant Coefficient of Ther	11	3		S Carbon Fiber (290 GPa)	œ,	C Fibers only						
Isotropic Instantaneous Coefficient o		4		Epoyy E-Glass LID	æ,					-11		
Orthotropic Instantaneous Coefficien		-	-				<i>≠</i> '	Estique Data at apr	a mana atraca coma	e from	1009	-11
Material Dependent Damping		5		line Structural Steel			e (ASME BPV Code, Se	ection 8, Div 2, Table	e 5-110	.1	
Damping Factor (g)		*		Click here to add a new material			-					
P Damping Factor (β)			-			-						-1
🔁 Speed of Sound												
🔁 Viscosity												
🔁 Bulk Viscosity												
Linear Elastic												
 Hyperelastic Experimental Data 												
 Hyperelastic 												
Chaboche Test Data			_		_	_	_				-	
Plasticity		Properti	es of	Outline Row 3: Carbon Fiber (290 GPa)						-	ņ	×
🗈 Creep				A				В	с	1	DE	-
🕀 Life		1		Property				Value	Unit		🔊 🛱	2
		2		Material Field Variables				Table				
⊞ Gasket		3		12 Density			18	00	kg m^-3	-		
Viscoelastic Test Data		46	Ξ	Isotropic Secant Coefficient of Thermal Expansion						[
∀iscoelastic		5		Coefficient of Thermal Expansion			1E	-06 8	C^-1	-		
Shape Memory Alloy		6	Đ	Orthotropic Elasticity						[
Geomechanical		16	7	P Isotropic Thermal Conductivity	0,	¹³ 9	W m^-1 C^-1	-		3		
Damage												
Cohesive Zone Coh												
Crack Growth Laws												
Thermal												
😭 Isotropic Thermal Conductivity	7											
Orthotropic mermai conductivity	1											
🔁 Specific Heat, C ₂	~											
-												

в

г

Рис. 4. Выбор материала волокна и наполнителя (окончание)
3. В первом модуле дважды нажимаем ЛКМ на *Material Designer*, после чего откроется окно, представленное на рис. 5.

Puc. 5. Окно Material Designer

4. В верхней панели инструментов (рис. 6) выбираем тип объемного элемента модифицированной микроструктуры согласно своему варианту (табл. 1).

Рис. 6. Выбор объемного элемента модифицированной микроструктуры

5. В появившейся слева панели присваиваем материал матрицы/ наполнителя (1) и частицы/волокон (2) (рис. 7). После чего необходимо применить изменения (3).

Рис. 7. Присвоение материалов

6. Для создания геометрии объемного элемента (рис. 8) нажимаем ЛКМ на *Geometry* (1). После этого в левой панели настроек отобразятся настройки геометрии объемного элемента (2) (в зависимости от типа, выбранного объемного элемента настройки могут быть различны). Нажимаем на галочку (3) и на рабочем пространстве появится трехмерная модель сгенерированного объемного элемента (4).

Рис. 8. Создание геометрии объемного элемента

7. Сгенерируем сеточную модель объемного элемента (рис. 9). Нажимаем ЛКМ на *Mesh* (1) и задаем максимальный размер сеточного объемного элемента (2). Нажимаем на галочку (3) и видим на экране сгенерированную сетку (4) объемного элемента.

Рис. 9. Создание сетки объемного элемента

8. Нажимаем ЛКМ на Settings (1). На панели слева (2) можно выставить интересующие настройки анализа объемного элемента (рис. 10), в нашем случае добавляем Compute coefficients of thermal expansion (Вычислить коэффициенты теплового расширения) и Compute thermal conductivity (Вычислить теплопроводность). Нажимаем на галочку (3) и видим системное окно, предупреждающее о результатах проведенного анализа (4).

9. Присваиваем название созданному объемному элементу (рис. 11). Для этого нажимаем ПКМ на *Analyses* (1) – *Constant Material* (2), вводим название материала (3) и нажимаем на галочку (4). Закрываем окно *Material Designer*.

Рис. 10. Выбор характеристик частицы

Рис. 11. Создание сетки объемного элемента

10. Создаем связь между первым и вторым модулями *Material Designer* для присвоения созданного нами композитного материала к анализируемой геометрии через второй блок (рис. 12):

10.1. В окне ANSYS Workbench нажимаем ПКМ на Material Designer
(1) и выбираем Update Update Для обновления проекта композитного материала.

10.2. Зажимаем ЛКМ *Material Designer* (1) и перетаскиваем его к *Engineering Data* (2).

10.3. Нажимаем ПКМ на *Engineering Data* (2) и жмем *Update*.

Рис. 12. Создание связи

11. Импортируем геометрию:

11.1. Дважды нажимаем ЛКМ на блок *Geometry* у модуля ACP (Pre).

11.2. В появившемся окне нажимаем *File – Open*.

11.3. Для того чтобы найти созданную геометрию, переходим в папку с ней и выбираем отображение всех форматов – *All Files (*.*)*. Нажимаем на созданную геометрию с расширением «.x_t» и жмем кнопку *Открыть*. Импортированная геометрия показан на рис. 13.

Рис. 13. Импорт геометрии

11.4. После этого окно геометрии можно закрыть.

12. Приступаем к созданию сетки:

12.1. Дважды нажимаем ЛКМ на блок *Model* у модуля *ACP* (*Pre*).

12.2. В открывшемся окне раскрываем вкладку Geometry (1), выделяем геометрию (2) и задаём толщину (3) 0,5 мм (рис. 14).

Рис. 14. Задание толщины оболочки

12.3. Задаем настройки сеточной модели:

– жмем ПКМ на *Mesh – Insert – Method*, выделяем геометрию (1) и выбираем метод (2) – *Multizone Quad/Tri* (рис. 15);

1	Duplicate Q Outline	Solve Solvers	Insert	Update	Generate Mesh	Surface Mesh	e Source, Preview	/Target	Method	E Sizing	Face Meshing	Mesh Copy	Match Control Control	Contact Si A Refinemer Pinch
С	utline					₽□×	ିତ୍ର	0) 📦 🍪		0 - 0	Q Q	0	Select 🗮 N
	Name Project* Model (E	✓ Searce 84)	ch Outlin	ie 🗸	-		Multi 20.12	Zone Q .2021 16	uad/Tri N 27	Aethod				
	Geo Geo ⊡√ ∰√ Mati	metry 1 ACP-Pre erials	\Surface1				N	1ultiZon	e Qu d∕1	ri Meth	od			
	⊞…~∕¥ Coo ⊡≶© Mes	rdinate Sy h MultiZon	stems e Quad/Ti	ri Methoo	1								+	
D	etails of "MultiZo	one Quad,	/Tri Meth	iod" - M	ethod 🔻	4 ⊡ ×								
Ξ	Scope									·				
	Scoping Method	1	Geometr	<u>v Sel</u> ecti	on									
	Geometry		1 Body	1										
Ξ	Definition			_					1					
	Suppressed		No											_
	Method		MultiZon	ie Quad,	/Tri		2							
	Surface Mesh Me	ethod	Quadrila	teral Do	minant		_							
	Element Order		Triangles MultiZog	a Ouad	/T-ii	_	2							
	Free Face Mesh 1	Type	Quad/In	re quau,	////		~					0,00		
Ξ	Advanced													25,00
	Preserve Bounda	ries	Protecter	H										

Рис. 15. Задание настроек сетки

– жмем ПКМ на *Mesh – Insert – Sizing*, выделяем всю геометрию (1) и задаем величину ячеек 1 мм (2) (рис. 16).

5	Outline So	lvera	Mesh	Mesh	Preview			Meshin	д Сору	Contro Contro	l 🐨 Pinch Is
Ou	utline			‡ □ ×	ତ୍ର୍	0	<u>ال</u>	0 - 0	Q Q	Q Q	Select
100	Name 🗖	 Search Outlin 	ne 🗸 🗸								
Œ	Project*				Body Sizing] 16:00				_	
ė	🐻 Model (B4))			20.12.2021	10:20					
	Geome	try			📕 Body Si	zing					
	A in the second	ICP + Pre (Surface) als	L								
	E. K. Coordi	nate Systems									
	🖻 🎸 🍘 Mesh							< +			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IultiZone Quad/T	ri Method					<u> </u>		$\sim$	
	~~~	lody sizing							>		
D											、 🚺
	tails of "Body Sizin	ig" - Sizing	••••••	4 U X							
	Scope Scoping Method	Geometry Selev	dion								
H	Geometry	1 Body									1
Б	Definition										
	Suppressed	No				1					
ŀ	Туре	Element Size									
	Element Size	1, mm 2									
Ξ	Advanced								0.00		
	Defeature Size	Default (2,1108	3e-002 mm)						0,00		
	Behavior	Soft									25,
Ľ	Growth Rate	Default (1,2)									

Рис. 16. Задание настроек сетки

12.4. Нажимаем ПКМ на *Mesh* и выбираем *Generate mesh*. Готовая сеточная модель представлена на рис. 17. Закрываем окно блока *Model*.

Рис. 17. Генерация сеточной модели

12.5. Нажимаем ПКМ на *Mesh*, выбираем *Update* 21 и после этого окно *Mechanical* можно закрыть.

13. Настраиваем слои созданных композитных материалов:

13.1. В окне Workbench дважды нажимаем на Setup в блоке ACP (Pre).

После этого перед нами появится окно, представленное на рис. 18.

Рис. 18. Окно ANSYS Composite PrepPost

13.2. Сразу изменяем единицы измерения на мм. Для этого нажимаем на *Units* (1) и выбираем *MPA* (*mm,t,s,N,C,USD*) (2) (рис. 19).

Рис. 19. Изменение единиц измерения

13.3. Создаем слой волокон композитного материала (рис. 20):

– для этого раскрываем раздел *Material Data* (1), нажимаем ПКМ на *Fabrics* (2) и выбираем *Create Fabric*... (3);

– выбираем материал (4), задаем толщину 0.5 мм (5) и жмем *Apply* (6). Если на экране появится окно с предупреждением, то его можно закрыть. После этого окно можно закрыть (7).

а

Рис. 20. Создание слоя волокон (начало)

😂 Fabri	c Properties	5			_		×
Name:	Fabric.1						
ID: F	abric.1						
General	Analysis	Solid Mo	del Opt.	Draping			
Genera	I						
N	/laterial: 🔤	nat_1	4				~
Th	ickness: 0.	5	5				
Pric	:e/Area: 0.	0					
Weigł	nt/Area: -1	.0					
Post-P	rocessing						
Ignor	e for Post-P	rocessing:					
				7	6		
				ОК	Apply	Car	ncel
				б			

Рис. 20. Создание слоя волокон (окончание)

13.4. Создаем ось координат (рис. 21). Нажимаем ПКМ на *Rosettes* (1), выбираем *Create Rosette*... (2) и жмем *Apply* (3). После этого окно можно закрыть (4).

	👸 Edge Sets				N
÷ 12	Geometry				T' .
.	Rosett ¢_i→ (Create Rosette	2		- - 2 [×]
	Look-	Paste			
	Select Orient Mode	Hide All Show All		Shell View	Logge
	Field [Sampling r	Sort		In [98]	: db.
		а			

Рис. 21. Создание оси координат (начало)

🞥 Rosette Pro	operties		-		×
Name: Rose ID: Roset	tte.1 te.1				
Type: Paralle	el				~
Definition					
Origin:	(0.0000,0.0000,0.0000)]			
1 Direction:	(1.0000,0.0000,0.0000)		Flip		
2 Direction:	(0.0000, 1.0000, 0.0000)		Flip		
	Shuffle Axes		Swap 1 and 2 D	irection	
		4	3		
	0	К	Apply	Can	cel

б

Рис. 21. Создание оси координат (окончание)

13.5. Создаем ориентированный блок (рис. 22):

– нажимаем ПКМ на *Rosettes* (1) и выбираем *Create Rosette*...(2);

– выбираем элемент/геометрию (выбираем его в дереве построения в paзделе *Element Sets*) (3), настраиваем ориентацию (4), выбираем созданную ось координат (5) и жмем *Apply* (6). После этого окно можно закрыть (7).

а

Рис. 22. Создание ориентированного блока (начало)

Рис. 22. Создание ориентированного блока (окончание)

13.6. Создаем модельную группу (объединение ориентированного элемента и пакета слоев) (рис. 23):

– нажимаем ПКМ на *Modeling Groups* (1) и выбираем *Create Modeling Group...* (2). В появившемся окне жмем *Ok* (3);

- нажимаем ПКМ на *ModelingGroups.1* (4) и выбираем *Create Ply...* (5);

– выбираем первый ориентированный блок (6) и слой композитного материала, жмем *Apply* (8). После этого окно можно закрыть (9).

13.7. Включаем отображение сетки (1) и направление волокон (2) в верхней панели (рис. 24). Выбрав модельную группу (3), видим зеленые стрелочки, показывающие направление волокон (4).

а

б

Рис. 23. Создание модельной группы

(начало)

в

Рис. 23. Создание модельной группы

(окончание)

Рис. 24. Отображение направления волокон

13.8. Создаем твердотельную модель (рис. 25):

– нажимаем ПКМ на Solid Models (1) и выбираем Create Solid Models...(2);

– выбираем элемент (нажимаем на область элемента и выбираем его в дереве построения) (3) и жмем *Apply* (4). После этого окно можно закрыть (5).

а

Рис. 25. Создание твердотельной модели

13.9. Закрываем окно ANSYS Composite PrepPost.

14. Зажимаем ЛКМ блок Setup (1) в модуле ACP (Pre) и перетаскиваем его на блок Model (2) в модуле Steady-State Thermal. После этого появляется окно с двумя вариантами (рис. 26): первый переместит твердотельную модель (есть возможность анализировать каждый слой выбранного сегмента, но может понадобится повторно создать контактные области), а второй переместит тонкостенную оболочку (нет возможности анализировать каждый слой отдельно). После выбора первого варианта нажимаем ПКМ на Setup (1) в модуле ACP (Pre) и выбираем Update.

Рис. 26. Импорт данных в Steady-State Thermal

 Приступаем к подготовке и проведению прочностного расчета:
 15.1. В окне Workbench дважды нажимаем на *Model* в блоке *Static Structural*. После этого перед нами появится окно, представленное на рис. 27.

Рис. 27. Окно Mechanical

15.2. Задаем граничные условия. Чтобы подвести температуру T_1 к поверхности, нажимаем ПКМ на *Steady-State Thermal* (1) и выбираем *Insert* (2) – *Temperature* (3) (рис. 28, *a*). После чего указываем нужное ребро (4), для этого нажимаем *Apply* (5) и указываем значение (6) (рис. 28, *б*). Аналогичным образов задаем температуру T_2 (рис. 28, *в*).

б

Рис. 28. Задание температуры (начало)

в

Рис. 28. Задание температуры (окончание)

15.3. Выбираем параметры, которые будут рассчитываться следующим образом:

– нажимаем ПКМ на *Solution* (1), выбираем *Insert* (2) – *Thermal* (3) – *Temperature* (4) (рис. 29).

Рис. 29. Выбор результатов

15.4. Запускаем расчет, нажав кнопку *Solve* (1) (рис. 30). Примечание: при запуске расчета может появиться предупреждение о том, что модельная группа имеет слишком длинное имя пути, но на расчет это не повлияет.

Рис. 30. Запуск расчета

15.5. Перед сохранением результатов расчета отключаем отображения сетки (рис. 31). Для этого в разделе *Display* (1) выберем *Edges* (2) – *Show Underformed WireFrame* (3). После этого мы увидим модель без сетки.

Рис. 31. Скрытие сетки

15.6. Сохраняем результаты расчета. Для этого переходим во вкладки результатов и делаем их скриншоты (рис. 32). Теперь окно *Mechanical* можно закрыть.

Рис. 32. Результаты расчета

16. В итоге должен получиться проект, имеющий следующую цепочку модулей (рис. 33). Аналогичный расчет выполняется для второго типа объемного элемента согласно варианту.

Рис. 33. Готовый проект

17. Сохраняем проект в папку, ранее созданную студентом (названия папки и проекта должны быть на английском языке). Для этого нажимаем *File – Save As... – Сохранить*. Чтобы проект можно было копировать без опасений сбить прописанные пути файлов, необходимо создать его архив.

Для этого нажимаем File – Archive... – Сохранить – Archive.

Содержание отчета

1. Титульный лист.

2. Цель работы.

3. Описание работы (с исходной схемой и таблицей для своего варианта).

4. Этапы построения (со скриншотами этапов).

5. Результаты работы (финальные скриншоты окон ANSYS Workbench, Material Designer, ACP (Pre) – Geometry, ACP (Pre) – Model, ACP (Pre) – Setup; Mechanical – граничные условия, Mechanical – результаты).

6. Вывод.

Контрольные вопросы

- 1. Какой формат модели импортировался в проект?
- 2. Краткая характеристика САЕ-систем. Примеры.
- 3. Для чего нужен Material Designer?
- 4. В каком блоке происходит настройка сеточной модели?
- 5. Как создавать связь между модулями?
- 6. Как приложить температуру к ребру/поверхности?
- 7. Основные этапы выполнения работы.

Лабораторная работа № 4 ПРОВЕДЕНИЕ КОМБИНИРОВАННОГО АНАЛИЗА ОБОЛОЧКИ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Цель работы

Изучение основных этапов проведения комбинированного анализа в среде ANSYS Workbench. Приобретение студентами навыков в использовании программного инструмента ANSYS Workbench – Steady-State Thermal и Static Structural при проведении комбинированного теплового и прочностного анализа оболочки из композиционных материалов, созданных с помощью Material Designer и ACP (Pre).

Описание работы

Используя модули *Material Designer*, *ACP (Pre)*, *Steady-State Thermal* и *Static Structural*, необходимо рассчитать распределение температуры по оболочке (*Thermal*), полное перемещение (*Total Deformation*) и эквивалентные напряжения (*Equivalent Stress*) из композиционных материалов (рис. 1–2). Известны: тип объемного элемента, участки с температурой T₁, T₂, давлением Р и жесткой заделкой (табл. 1).

Рис. 1. Схема № 1

Рис. 2. Схема № 2

Таблица 1

Вариант	Номер схемы	Тип объемного элемента	T₁, °C	T₂, °C	Р, кПа
1	1	Сферическая	50	10	10
2	2	Плетеная	55	20	20
3	1	Регулярная однонаправленная	65	40	30
4	1	Сферическая	70	60	15
5	2	Плетеная	40	50	10
6	2	Регулярная однонаправленная	110	30	25
7	1	Плетеная	45	70	55
8	2	Сферическая	50	60	10
9	1	Сферическая	60	85	35
10	1	Регулярная однонаправленная	55	40	45
11	2	Плетеная	40	30	10

Исходные данные

Окончание табл. 1

Вариант	Номер схемы	Тип объемного элемента	T ₁ , °C	T ₂ , °C	Р, кПа
12	1	Сферическая	30	20	15
13	1	Сферическая	20	5	35
14	2	Регулярная однонаправленная	60	50	60
15	2	Плетеная	70	45	10
16	1	Сферическая	80	35	15
17	2	Плетеная	90	55	45
18	2	Плетеная	65	70	60
19	1	Сферическая	75	65	20
20	2	Регулярная однонаправленная	80	30	25
21	1	Сферическая	60	20	45
22	1	Плетеная	50	10	10
23	2	Регулярная однонаправленная	40	25	15
24	1	Сферическая	55	45	55
25	2	Регулярная однонаправленная	75	10	50
26	2	Плетеная	35	65	40
27	1	Плетеная	45	80	30
28	2	Сферическая	80	30	20
29	2	Регулярная однонаправленная	90	35	15
30	1	Плетеная	55	40	10

Порядок выполнения лабораторной работы

1. Запускаем ANSYS Workbench и добавляем несколько модулей: Material Designer, ACP (Pre), Steady-State Thermal и Static Structural (рис. 3).

Рис. 3. Добавление модулей

2. Подготавливаем материал волокна и наполнителя:

2.1. Дважды нажимаем ЛКМ на блок Engineering Data (1), после чего жмем на Engineering Data Sources (2). Выбираем библиотеку Composite Materials (3) и подключаем материалы волокна – Carbon Fiber (290 GPa) и наполнителя – Epoxy E-Glass UD (4). Нажимаем на Engineering Data Sources (2) еще раз, чтобы вернуться к используемым в проекте материалам (рис. 4, a, δ).

2.2. Добавляем коэффициент теплового расширения и теплопроводности для наполнителя и волокна:

– для волокна (5) коэффициент теплового расширения *Isotropic Secant Coefficient of Thermal Expansion* (6) будет равен $1 \cdot 10^{-6} 1/^{\circ}$ C (8), а коэффициент теплопроводности *Isotropic Thermal Conductivity* (7) – 0,03 Bt/(м·°C) (9); – для наполнителя (10) коэффициент теплового расширения *Isotropic* Secant Coefficient of Thermal Expansion (11) будет равен $5 \cdot 10^{-5} 1/^{\circ}$ C (13), а коэффициент теплопроводности *Isotropic Thermal Conductivity* (12) – 0,2 Bt/(м·°C) (14).

ect Schematic A B Material Designer B Material Designer Material De									
 A Material Designer ≧ Engineering Data ✓ ≧ Engineering Data ✓ ≧ Engineering Data ✓ ≧ Engineering Data ✓ ≧ @ Engineering Data ✓ ≧ @ Geometry ≧ @ Model ≧ @ Model ≧ @ Setup ≧ @ Setup ≧ @ Setup ≧ @ Setup 							tic	emati	Sch
 A B B Material Designer Pagineering Data ✓ ↓ B ACP (Pre) C Steady-State Thermal Steady-State Thermal C Engineering Data ✓ ↓ Segmetry Segmetry									
 A Material Designer Model Model Model Setup Setup Solution 									
1 Image: Material Designer 2 Image: Engineering Data 3 Image: Material Designer Material Designer Image: Comparison of Comparison	▼ B C		-	i		A			•
2 Image: Constraint of the second secon	1 🚾 ACP (Pre) 1 🔃 Steady-State Thermal	ACP ,	1	1)esigner	Material D	۲	1
3 Material Designer 3 Geometry 1 Material Designer 4 Model 1 5 Setup 1 5 ACP (Pre) 6 Solution 6	2 🥏 Engineering Data 🗸 🖌 2 🥏 Engineering Data 🗸	🥏 E	2	1	× .	ng Data	Engineerir	٢	2
Material Designer 4 Model 7 5 5 5 6 ACP (Pre) 6 6	3 🥪 Geometry ?	9	3	1.1	2)esigner	Material D	۲	3
5 Setup 7 5 Setup 7 ACP (Pre) 6 Generation Solution Generation	4 💓 Model 😨 🖌 4 💓 Model 😨 🦯	1	4			esigner	Material D		
ACP (Pre) 6 🖬 Solution	5 🚾 Setup 😨 5 🍓 Setup 😨	ACP S	5						
	ACP (Pre) 6 🕼 Solution 😨								
7 🥡 Results	7 🥪 Results 🔗 ,								
Steady-State Thermal	Steady-State Thermal								

а

7 Filter Engineering Data 🗰 Engineering (Data	Sources	2													
Toobox 🔹 🤻	×	Engine	rring Data Sources								ą.	x	Table (of Properties Row	2: Density	- 4 X
E Viscoelastic	^		A	в		с			D			^		A		
E Shape Memory Alloy		1	Data Source	1	U	ocation	n		Descript	ion			1	Density (kg m	^-3) 🌲	
Geomechanical		6	Geomethanical Materials	-			120	General use	material samples	for use with			2	2000		
Damage		-					1005	geomechani	cal models.		-	11				
E Cohesive Zone		7	U Composite Materials	Π.	_		N.	Material san	nples specific for c	omposite structures.	_					
Fracture Criteria		8	General Non-linear Materials				62,	General use analyses.	material samples	for use in non-linear						
Crack Growth Laws		9	Explicit Materials	m	-		12	Material san	oles for use in an	explicit analysis.						
Thermal		10	W Menandaste Matariale	듵	-		201	Material stra	er-strain data sa	miler for curve fitting	-	-				
Thermopower		10	Tripe case note has	-	-		1000	RHOmes	annias macific fo	use in a manualiz	-					
⊞ Linear "Soft" Magnetic Material		11	Magnetic B-H Curves		-		1	analysis.	angeres apresing to	see in a magness.	1	*				
E Linear "Hard" Magnetic Material		Outine	of Conposite Materials		-					¥	9	x				
Nonlinear "Soft" Magnetic Material			A		8	C		D		E		^				
Nonlinear "Hard" Magnetic Material		-1	Contents of Composite Materials	12	A	dd		Source	C	escription			Charte	No data		- 0 V
Electric		3	Scarbon Fiber (230 GPa)		100		629	Composite_M	Fibers only				Green:	ny usia		
Brittle/Granular		-4	Carbon Fiber (290 GPa)		100	4	629	Composite M	Fibers only							
Equations of State			Carbon Eber (305 CDa)	-	1 100	-	020	Composite M	Ebers colu							
Porosity		-	Calentral (255 Gra)	-	00			Composite_in	Thomson		-					
E Failure		6	w E-Gass	_	100	-	-	Composite_Ps	Fibers only		-					
Nonlinear		7	Epoxy Carbon UD (230 GPa) Prepreg	_	192		-	Composite_M			-					
Elasto-Plastic Behavior		8	Epoxy Carbon UD (230 GPa) Wet	_	192	-	020	Composite_M				-				
Perforated Media		9	Sepoxy Carbon UD (395 GPa) Prepreg		1		020	Composite_M								
E Composte		10	Sepoxy Carbon Woven (230 GPa) Prepreg		100		9 <u>9</u> 9	Composite_M								
Forming Plasticity		11	Sepoxy Carbon Woven (230 GPa) Wet		190		620	Composite_M								
E Foams		12	Sepoxy Carbon Woven (395 GPa) Prepreg		10		-	Composite_M								
🗄 Eulerian		13	Se Epoxy E-Glass UD	4	1.00		629	Composite_M								
E Concrete		-		_	1.00		-					~				
E Custom Material Models	*	Propert	tes of Outline Row 13: Epoxy E-Glass UD							*	9	×				
Y View Al / Customize.			A					1	8	с		0				
🖁 Ready									Job Monitor	No DPS Connecti	ion	(Beta)		Show Progress	Show 01	Messages

б

Рис. 4. Выбор материала волокна и наполнителя (начало)

🍸 Filter Engineering Data 🎬 Engineering	Data	Sources										
Toolbox 🔻 👎	×	Outline	ofS	hematic A2: Engineering Data							ņ	×
Physical Properties	^			A	в	С	D		E			
🔁 Density		1		Contents of Engineering Data	0	8	Source		Description			
🔀 Isotropic Secant Coefficient of Therma	6	2	-	Material								
Orthotropic Secant Coefficient of Ther		3		Scarbon Fiber (290 GPa)	1 -		œ,	Fibers only				78
Isotropic Instantaneous Coefficient o		4		Enoxy E-Glass I D			æ (-11
Orthotropic Instantaneous Coefficien		-	-		-	-	<i>≠</i> `	Estique Data at as	a mana atraas como	. from	1009	-11
Material Dependent Damping		5		📎 Structural Steel			e (ASME BPV Code, S	ection 8, Div 2, Table	5-110	.1	
Damping Factor (g)		*		Click here to add a new material								
Camping Factor (β)						-						
🔁 Speed of Sound												
🔁 Viscosity												
P Bulk Viscosity												
Linear Elastic												
 Hyperelastic Experimental Data 												
Hyperelastic												
Chaboche Test Data					_	_	_				_	_
Plasticity		Properti	es o	f Outline Row 3: Carbon Fiber (290 GPa)					1	-	ф.	×
🕀 Creep				A				В	С		DE	:
🗄 Life		1		Property				Value	Unit	(84	2
		2	L	Material Field Variables				Table				
🗄 Gasket		3		12 Density			18	00	kg m^-3	•		
 Viscoelastic Test Data 		46	Ξ	Isotropic Secant Coefficient of Thermal Expansion								
		5		Coefficient of Thermal Expansion			1E	-06 8	C^-1	•	[3
Shape Memory Alloy		6	Đ	🔁 Orthotropic Elasticity								
Geomechanical		16	7	2 Isotropic Thermal Conductivity			0,	¹³ 9	W m^-1 C^-1	•		1
🖽 Damage												
Cohesive Zone Coh												
E Thermal												
Isotropic Thermal Conductivity	7											
Inermal Isotropic Thermal Conductivity orthotropic mermal conductivity	7											

в

🍸 Filter Engineering Data 龖 Engineering Data	Sources									
Toolbox 🔻 👎 🗙	Outline	of Schematic A2: Engineering Data							ņ	x
Physical Properties		A	в	с	D		E			
2 Density	1	Contents of Engineering Data 🌲	9	8	Source		Description			
Isotropic Secant Coefficient of Therma	2	Material								
Orthotropic Secant Coefficient of Ther	3	📎 Carbon Fiber (290 GPa)			₽.	Fibers only			_	П
Isotropic Instantaneous Coefficient Orthotropic Instantaneous Coefficient	4	Sepoxy E-Glass UD			÷				_	
Melting Temperature	5	Structural Steel 10	E		@ G	Fatigue Data at zer ASME BPV Code, Se	o mean stress come action 8, Div 2, Table	s from = 5-110	1998 . 1	3
Damping Factor (g)	*	Click here to add a new material		-						
2 Damping Factor (B)			-							_
Speed of Sound										
Viscosity										
🔁 Bulk Viscosity										
Linear Elastic										
 Hyperelastic Experimental Data 										
Hyperelastic										
Chaboche Test Data			_	_					_	_
Plasticity	Propert	es of Outline Row 4: Epoxy E-Glass UD							ņ	×
I Creep		A				В	с		D	Е
⊞ Life	1	Property				Value	Unit		8	ĠΖ
Strength Strength	2	🚰 Material Field Variables				Table				_
⊞ Gasket	3	P Density			200	00	kg m^-3	-		
Wiscoelastic Test Data	4	Botropic Secant Coefficient of Thermal Expansion								
	5	Coefficient of Thermal Expansion			5E-	05 13	C^-1	-		
Shape Memory Alloy	6	Orthotropic Elasticity								
Geomechanical	16	Orthotropic Stress Limits								
☑ Damage	26	Orthotropic Strain Limits								
Cohesive Zone Coh	36	🗉 🔁 Tsai-Wu Constants 12								
	40	E SZI Puck Constants								
Crack Growth Laws	46	Isotropic Thermal Conductivity			0,2	14	W m^-1 C^-1	-		
Thermal	47	🗈 🔁 Ply Type								
🛃 Isotropic Thermal Conductivity 12	49	Additional Puck Constants								
Orthotropic Thermal Conductivity										
Specific Heat, Co										
View All / Customize										

г

Рис. 4. Выбор материала волокна и наполнителя (окончание)

3. В первом модуле дважды нажимаем ЛКМ на *Material Designer*, после чего откроется окно, представленное на рис. 5.

🔤 🖻	- 5) - (° -	\$			A:Mat	erial Desi	gner - De	sign1 - SpaceC	laim - Mate	rial Design	er			- 1	×
File	Addit	ive Ma	terial Desi	igner												• 🕜
R	歙			<u> -</u>		1	0			0	0	0	0	0	×	
Edit G	Lattice	UD Comp	osite Rai Co	ndom UD omposite	Chopped Fiber Composite RVE Typ	Woven Composite e	Particle	Random Particle	User Defined	RVE Model •	Solve	Update •	Display	Help	Exit MD Mode	
Outline				4												
Struct_I Options -	RVE Mode Materi Geom Mesh Setting Analyses Laye Se Selection ch	el als etry gs lecti Grou n	– Views	Outi_						¥				A	NSYS	5
✓ Sna ✓ Sna □ Crea	p to grid p to angle ate layout	e curves							1	<u>_</u>	×					
Propertie	5			ą	2	×									10m	m
Properti	es Appe	arance			∧ Design1×											4 Þ ×
Ready	-							A -				\$ K? R	- 00- 14	- +	Q - #	7

Рис. 5. Окно Material Designer

4. В верхней панели инструментов (рис. 6) выбираем тип объемного элемента модифицированной микроструктуры согласно своему варианту (табл. 1).

Рис. 6. Выбор объемного элемента модифицированной микроструктуры

5. В появившейся слева панели присваиваем материал матрицы/ наполнителя (1) и частицы/волокон (2) (рис. 7). После чего необходимо применить изменения (3).

Рис. 7. Присвоение материалов

6. Для создания геометрии объемного элемента (рис. 8) нажимаем ЛКМ на *Geometry* (1). После этого в левой панели настроек отобразятся настройки геометрии объемного элемента (2) (в зависимости от типа, выбранного объемного элемента настройки могут быть различны). Нажимаем на галочку (3) и на рабочем пространстве появится трехмерная модель сгенерированного объемного элемента (4).

Рис. 8. Создание геометрии объемного элемента

7. Сгенерируем сеточную модель объемного элемента (рис. 9). Нажимаем ЛКМ на *Mesh* (1) и задаем максимальный размер сеточного объемного элемента (2). Нажимаем на галочку (3) и видим на экране сгенерированную сетку (4) объемного элемента.

Рис. 9. Создание сетки объемного элемента

8. Нажимаем ЛКМ на Settings (1). На панели слева (2) можно выставить интересующие настройки анализа объемного элемента (рис. 10), в нашем случае добавляем Compute coefficients of thermal expansion (Вычислить коэффициенты теплового расширения) и Compute thermal conductivity (Вычислить теплопроводность). Нажимаем на галочку (3) и видим системное окно, предупреждающее о результатах проведенного анализа (4).

9. Присваиваем название созданному объемному элементу (рис. 11). Для этого нажимаем правую кнопку мыши (ПКМ) на *Analyses* (1) – *Constant Material* (2), вводим название материала (3) и нажимаем на галочку (4). Закрываем окно *Material Designer*.

• • ۴ • ۴ 🖥	A:Material Designer - Design1 - SpaceClaim - Material Designer	- - ×
File Additive Material Designer	X (à) en en estat (in the second seco	- (T)
Select Change Constituent Geometry M Materials	Iesh Analysis Constant Variable Belings Material Material Update Orientation Open Exit	
Edit 🖙 RVE Type RVE Model	Solve Update Display Help MD Mode	
Udane v Meterial P RVE Model (UD) V Meterial V Sentry Meterial Sructu. Layers Select. Groups Views (outline Options - Settings 0 General Type of anisotropy: Orthotropic v C Compute Inner elasticity C Compute Inner elasticity C Compute Inner elasticity	Change the options and click on complete to finalise the analysis settings.	ANSYS
Use periodic boundary conditions Use material symmetry in XY <	Information	
Properties 2	Available Settings	2µm
Properties Appearance		A D X
Change the options and click on complete to finalis	ie the analysis settings.	mul 🕹 v 🚓 🚽 🖌 🐂

Рис. 10. Выбор характеристик частицы

Рис. 11. Создание сетки объемного элемента

10. Создаем связь между первым и вторым модулями *Material Designer* для присвоения созданного нами композитного материала к анализируемой геометрии через второй блок (рис. 12):

10.1. В окне ANSYS Workbench нажимаем ПКМ на Material Designer
(1) и выбираем Update Update Для обновления проекта композитного материала.

10.2. Зажимаем ЛКМ *Material Designer* (1) и перетаскиваем его к *En*gineering Data (2).

10.3. Нажимаем ПКМ на *Engineering Data* (2) и жмем *Update*.

Рис. 12. Создание связи

11. Импортируем геометрию:

11.1. Дважды нажимаем ЛКМ на блок *Geometry* у модуля ACP (Pre).

11.2. В появившемся окне нажимаем *File – Open*.

11.3. Для того чтобы найти созданную геометрию, переходим в папку с ней и выбираем отображение всех форматов – *All Files* (*.*). Нажимаем на созданную геометрию с расширением «.x_t» и жмем кнопку *Открыть*. Импортированная геометрия показана на рис. 13.

Рис. 13. Импорт геометрии

11.4. После этого окно геометрии можно закрыть.

12. Приступаем к созданию сетки:

12.1. Дважды нажимаем ЛКМ на блок *Model* у модуля ACP (Pre).

12.2. В открывшемся окне раскрываем вкладку Geometry (1), выделяем геометрию (2) и задаём толщину (3) 0,5 мм (рис. 14).

Рис. 14. Задание толщины оболочки

12.3. Задаем настройки сеточной модели:

– жмем ПКМ на *Mesh – Insert – Method*, выделяем геометрию (1) и выбираем метод (2) – *Multizone Quad/Tri* (рис. 15);

0	utline	→ ‡ □ ×	8	ਦ ୍ 🗊 🗣 🏶 🖫 🔿 - 💠 🧕 🗨 🍭 🔍
and a second	Name Sear Project* @ Model (B4)	rch Outline 🖌 🗸	M 25	ultiZone Quad/Tri Method .01.2022 15:02
	⊡√ੴ Geometry ↓√ ₪ ACP-Pre ⊕√፟ Materials	e\Surface1		MultiZone Quad/Tri Method
Coordinate Systems KultiZone Quad/Tri Method			1	
	•			
D	etails of "MultiZone Quad	I/Tri Method" - Met 🔻 🛱 🗖 🗙		
Ξ	Scope			
	Scoping Method	Geometry Selection		
	Geometry	1 Body		
Ξ	Definition			
	Suppressed	No		
	Method	MultiZone Quad/Tri 🗾 👻		
	Surface Mesh Method	Quadrilateral Dominant		
	Element Order	MultiZana Ouad/Tri		
	Free Face Mesh Type	Ousd/fri		
=	Advanced	2		
	Preserve Boundaries	Protected 🖌		0.00
	Mesh Based Defeaturing	On		0,00
	Defeature Size	Default(2,8407e-002 mm)		

Рис. 15. Задание настроек сетки

– жмем ПКМ на *Mesh – Insert – Sizing*, выделяем всю геометрию (1) и задаем величину ячеек 1 мм (2) (рис. 16).

;	indire.	Joaren Oudine		
Į.	Project*		25 01 2	Sizing 2022 15:04
E	🗄 🖷 🐻 Model (B4))	25.01.2	022 15:04
	🖻 🧹 🐨 Geome	try	📃 Bo	dy Sizing
		\CP-Pre\Surface1		
	H Materia	als		
	H Koora	nate Systems		
	E A Nesi	AultiZone Quad/Tri Method		
		Rody Sizing		
	V 💎 -			
i.			1	
D	etails of "Body Sizin	ng" - Sizing 👻 🔻 🗖 🗙		
-	Scope			
	Scoping Method	Geometry Selection		
	Geometry	1 Body		
Э	Definition			
	Suppressed	No		
	Туре	Element Size		
	Element Size	1, mm 🤈		
Э	Advanced			
	Defeature Size	Default (2,8407e-002 mm)		
	Behavior	Soft		
	Growth Rate	Default (1,2)		0.00
	Capture Curvature	No		
	Capture Proximity	No		

Рис. 16. Задание настроек сетки

12.4. Нажимаем ПКМ на *Mesh* и выбираем *Generate mesh*. Готовая сеточная модель представлена на рис. 17. Закрываем окно блока *Model*.

Рис. 17. Генерация сеточной модели

12.5. Присваиваем имена поверхностям, к которым будут прикладываться силы. Выделяем каждую область ЛКМ, после чего нажимаем на неё ПКМ (1) и выбираем *Create Named Selection...* (2). В итоге две поверхности будут иметь персональное название (3).

12.6. Нажимаем ПКМ на *Mesh*, выбираем *Update* ¹² и после этого окно *Mechanical* можно закрыть.

13. Настраиваем слои созданных композитных материалов:

13.1. В окне *Workbench* дважды нажимаем на *Setup* в блоке *ACP (Pre)*. Перед нами появится окно, представленное на рис. 18.

Рис. 18. Окно ANSYS Composite PrepPost

13.2. Сразу изменяем единицы измерения на мм. Для этого нажимаем на *Units* (1) и выбираем *MPA (mm,t,s,N,C,USD)* (2) (рис. 19).

Рис. 19. Изменение единиц измерения

13.3. Создаем слой волокон композитного материала (рис. 20):

– для этого раскрываем раздел *Material Data* (1), нажимаем ПКМ на *Fabrics* (2) и выбираем *Create Fabric*... (3);

– выбираем материал (4), задаем толщину 0.5 мм (5) и жмем *Apply* (6). Если на экране появится окно с предупреждением, то его можно закрыть. После этого окно можно закрыть (7).

a

🞥 Fabrio	c Propertie	5		_		
Name: Fabric.1						
ID: F	abric.1					
General	Analysis	Solid Model Opt	. Draping			
Genera						
N	laterial: n	nat_1 4			~	
Thi	ickness: 0.	5 5				
Pric	e/Area: 0.	0				
Weigh	nt/Area: -1	.0				
Post-Pr	rocessing					
Ignore	e for Post-P	rocessing:				
			7	6		
L			ОК	Apply	Cancel	

б

Рис. 20. Создание слоя волокон
13.4. Создаем ось координат (рис. 21). Нажимаем ПКМ на *Rosettes* (1) и выбираем *Create Rosette*... (2), меняем тип на *Radial* (3) и жмем *Apply* (4). После этого окно можно закрыть (5).

8	7	鸄 Rosette Pro	operties			-		\times
	^	Name: Rose	<mark>tte.1</mark> te.1					
Steel		Type: Radial						\sim
		Definition						3
		Origin:	(0.0000,0.0000,0.0000)					
		1 Direction:	(1.0000,0.0000,0.0000)			Flip		
		2 Direction:	(0.0000,1.0000,0.0000)			Flip		
			Shuffle Axes			Swap 1 and 2 D	irection	
iate System					5	4		
				Oł	K	Apply	Can	cel
			б					

Рис. 21. Создание оси координат

13.5. Создаем ориентированный блок (рис. 22):

– нажимаем ПКМ на *Rosettes* (1) и выбираем *Create Rosette*...(2);

– выбираем элемент/геометрию (выбираем его в дереве построения в разделе *Element Sets*) (3), настраиваем ориентацию (4), выбираем созданную ось координат (5) и жмем *Apply* (6). После этого окно можно закрыть (7).

Рис. 22. Создание ориентированного блока

13.6. Создаем модельную группу (объединение ориентированного элемента и пакета слоев) (рис. 23):

– нажимаем ПКМ на *Modeling Groups* (1) и выбираем *Create Modeling Group*... (2). В появившемся окне жмем *Ok* (3);

- нажимаем ПКМ на *ModelingGroups.1* (4) и выбираем *Create Ply...* (5);

– выбираем первый ориентированный блок (6) и слой композитного материала, жмем *Apply* (8). После этого окно можно закрыть (9).

a

б

Рис. 23. Создание модельной группы (начало)

Рис. 23. Создание модельной группы (окончание)

13.7. Включаем отображение сетки (1) и направление волокон (2) в верхней панели (рис. 24). Выбрав модельную группу (3), видим зеленые стрелочки, показывающие направление волокон (4).

Рис. 24. Отображение направления волокон

13.8. Создаем твердотельную модель (рис. 25):

– нажимаем ПКМ на Solid Models (1) и выбираем Create Solid Models...(2);

– выбираем элемент (нажимаем на область элемента и выбираем его в дереве построения) (3) и жмем *Apply* (4). После этого окно можно закрыть (5).

а

б

Рис. 25. Создание твердотельной модели

13.9. Закрываем окно ANSYS Composite PrepPost.

14. Зажимаем ЛКМ блок Setup (1) в модуле ACP (Pre) и перетаскиваем его на блок Model (2) в модуле Steady-State Thermal. После этого появляется окно с двумя вариантами (рис. 26): первый переместит твердотельную модель (есть возможность анализировать каждый слой выбранного сегмента, но может понадобится повторно создать контактные области), а второй переместит тонкостенную оболочку (нет возможности анализировать каждый слой отдельно). После выбора первого варианта нажимаем ПКМ на Setup (1) в модуле ACP (Pre) и выбираем Update.

Рис. 26. Импорт данных в Steady-State Thermal

 Приступаем к подготовке и проведению прочностного расчета:
 15.1. В окне Workbench дважды нажимаем на *Model* в блоке *Static Structural*. После этого перед нами появится окно, представленное на рис. 27.

Context	C : Steady-State Thermal - Mechanical [ANSYS Mechanical Enterprise]	– 🗆 ×
File Home Model Display Selection	Automation	Quick Launch 🔨 🐼 📀
Line X F Image: Constraint of the system Image: Constraintof the system Imag	Commands Images* Comment Section Plane Chart Annotation tt	Construction Geometry Define Geometry
Outline 🗸 🕂 🗆 🗙	🔍 🔍 📦 📦 🍄 🍱 🔿 - 💠 🤨 🕘 🍭 Select 💺 Mode	- 🗈 🖬 📾 📾 🗮 🍹 🍹
Name Search Outline Imports Import Summary Import Summary Import Summary	Model 01.02.2022 13:08	60,00 (mm)
Details Section Planes		

Рис. 27. Окно Mechanical

15.2. Задаем граничные условия. Чтобы подвести температуру T_1 к поверхности, нажимаем ПКМ на *Steady-State Thermal* (1) и выбираем *Insert* (2) – *Temperature* (3) (рис. 28, *a*). После чего указываем нужное ребро (4), нажимаем *Apply* (5) и указываем значение (6) (рис. 28, *б*). Аналогичным образов задаем температуру T_2 (рис. 28, *в*).

Рис. 28. Задание температуры (начало)

Рис. 28. Задание температуры (окончание)

15.3. Выбираем параметры, которые будут рассчитываться следующим образом:

– нажимаем ПКМ на *Solution* (1), выбираем *Insert* (2) – *Thermal* (3) – *Temperature* (4) (рис. 29).

Рис. 29. Выбор результатов

15.4. Запускаем расчет, нажав кнопку *Solve* (рис. 30). Примечание: при запуске расчета может появиться предупреждение о том, что модельная группа имеет слишком длинное имя пути, но на расчет это не повлияет.

Рис. 30. Запуск расчета

15.5. Перед сохранением результатов расчета отключаем отображения сетки (рис. 31). Для этого в разделе *Display* (1) выбираем *Edges* (2) – *Show Underformed WireFrame* (3). После этого мы увидим модель без сетки.

Γ	Result	Display Selectio	n Auto	omation	1			Quick Launch
re /er	Analysis	Amed Selection ☆ Coordinate Syste Ø ₆ Remote Point	Comr Comr Comr M Chart	nands (இ) Images ▼ nent (1) Section Plane : BAnnotation	Display Show Reduced Model (Beta) Beta	Vector Display	d Views	
s ate tior Sel r-S itia taly :mp shu \$	earch Outlin Systems is lies ections tate Therr I Temperatur visis Settings erature 2 tion (C4) Solution Infi Temperatur	ne Y -	4 II ×	C: Steady-State Therm Temperature Upt: Temperature Upt: Tomerature Un.0.2.2022 14:41 50 Max 41,429 43,571 35,714 32,657 30	0, (Auto Scale) Scoped Bodies Carge Vertex Contou	Geometry Contou Display	Probe P	A WireFrame B Show Undeformed Wir Display the re wireframe over the undeform O Press F1 for help.
re"	Geometry S All Bodies Temperatu	Selection re	₽ □ ×	27,143 24,286 21,429 18,571 15,714 12,857 10 Min				
ry	Time Last Yes No				0,00	25,	50,00 00)(mm)

Рис. 31. Скрытие сетки

15.6. Сохраняем результаты расчета. Для этого переходим во вкладки результатов и делаем их скриншоты (рис. 32). Теперь окно *Mechanical* можно закрыть.

Рис. 32. Результаты расчета

16. Далее импортируем данные из модуля *Steady-State Thermal* в *Static Structural* (рис. 33):

– импортируем геометрию из блока *Model* (*Steady-State Thermal*) (1) в блок *Model* следующего модуля (*Static Structural*) (2);

– импортируем температурное поле из *Steady-State Thermal* (3) в граничные условия модуля *Static Structural* (4).

Рис. 33. Импорт данных в Static Structural

17. Приступаем к подготовке и проведению прочностного расчета:

17.1. В окне Workbench дважды нажимаем на *Model* в блоке *Static Structural*. После этого перед нами появится окно, представленное на рис. 34.

Puc. 34. Окно Mechanical

17.2. Чтобы проверить, импортировалось ли поле температур, раскрываем вкладку *Imported Load* (1) и нажимаем на *Imported Body Temperature* (2). После этого на геометрии отобразится распределение температуры (3) (рис. 35).

Рис. 35. Импортированное поле температур

17.3. Задаем граничные условия:

– чтобы зафиксировать геометрию в пространстве, нажимаем ПКМ на *Static Structural* (1) и выбираем *Insert* (2) – *Fixed Support* (3) (рис. 36, *a*). После чего указываем нужные ребра (4) и нажимаем *Apply* (5) (рис. 36, δ);

Outline	····· ∓ 🗖 🗖 🗙	ତ୍ ତ୍ 📦 📦 🍣		୦ - 💠 ବ୍ ବ୍ ବ୍	Q Selec
Name Search Outline Project* Image: Search Outline Image: Search Outline Image: Search Outline Image: Search Outline <td>~•</td> <td>D: Static Structural Static Structural Time: 1, s 01.02.2022 15:24</td> <td>ଡ଼ି ବ୍ୟୁ ଡ୍ୟୁ</td> <td>Acceleration Standard Earth Gravit Rotational Velocity Rotational Acceleratio</td> <td>y in</td>	~ •	D: Static Structural Static Structural Time: 1, s 01.02.2022 15:24	ଡ଼ି ବ୍ୟୁ ଡ୍ୟୁ	Acceleration Standard Earth Gravit Rotational Velocity Rotational Acceleratio	y in
Connections Conne	Insert	2,	6 6 6 6	Pressure Hydrostatic Pressure Force Remote Force	
Pice Solution (D4)	Solve Solve Export Nas Duplicate Clear Gene	tran File	0 	Bearing Load Bolt Pretension Moment Line Pressure	
Details of "Static Structural (D3)"	alb Rename	F2	•	Thermal Condition Joint Load	
Physics Type Struct Analysis Type Static	G Open Solve	er Files Directory	G G	Fixed Support 3 Displacement	
Solver Target Mech	Filter Based	d on Environment (Beta) Rep Files (Beta)	9 <u>.</u>	Remote Displacement Frictionless Support	Fixed Su
Children in the second	😔 Abandon P	(SM Jobs (Beta)			

а

Рис. 36. Фиксация геометрии в пространстве

– чтобы задать давление, нажимаем ПКМ на *Static Structural* (1) и выбираем *Insert* (2) – *Pressure* (3) (рис. 37, *a*). После чего указываем нужную поверхность (4), нажимаем *Apply* (5) и задаем значение давления (6) (рис. 37, *б*). Примечание: необходимо обратить внимание на выбранные единицы измерения.

U → Cut ∧ Delete My Col Copy Q Find Duplicate Paste Paste Tree ✓ Cores	mputer • tributed 2 Solve	Solve	iamed Goordii Gemote	Selection EC nate System 💬 Point mi Inser	Commands Comment Chart t	Mages *	Tools	Layout	
Jutine Search Outline Image: Name Connections Image: Name Search Outline <	↓ ↓ × ✓ ↓ ×	Q Q P • • • D: Static Structural Static Structural Time: 1, s 01.02,2022 16:07 Fixed Support	2	Acceleration Standard Eart Rotational Ve Rotational Ac Pressure Hydrostatic Pr Force Remote Force		Select M	t a pressure sure or a var	E load that app	
Pressure Press	Solve Export Nastran Duplicate Clear Generate Rename	File d Data	0 	Bearing Load Bolt Pretensio Moment Line Pressure Thermal Conc	on dition	(X, y,	Press F1 for help.		
Details of "Static Structural (D3)" Ip I Definition Im Physics Type Stru Analysis Type Stat Solver Target Mee Options #	Group All Simil Open Solver Fi Filter Based on Evport CAERen	ar Children les Directory Environment (Beta) Files (Beta)	() () () () () () () () () () () () ()	Joint Load Fixed Support Displacement Remote Displa	t : acement		40,00 (mm))	

a

Рис. 37. Фиксация геометрии в пространстве

17.4. Выбираем параметры, которые будут рассчитываться следующим образом:

- нажимаем ПКМ на Solution (1), выбираем Insert (2) – Deformation
(3) – Total (4) (рис. 38, a);

- нажимаем ПКМ на *Solution* (1), выбираем *Insert* (2) - *Stress* (3) - *Equivalent (von-Mises)* (4) (рис. 38, б).

б

Рис. 38. Выбор результатов

17.5. Запускаем расчет, нажав кнопку *Solve* (рис. 39). Примечание: при запуске расчета может появиться предупреждение о том, что модельная группа имеет слишком длинное имя пути, но на расчет это не повлияет.

Рис. 39. Запуск расчета

17.6. Сохраняем результаты расчета. Для этого переходим во вкладки результатов и делаем их скриншоты (рис. 40). Теперь окно *Mechanical* можно закрыть.

Рис. 40. Результаты расчета: *а* – полное перемещение; *б* – эквивалентное напряжение (начало)

Рис. 40. Результаты расчета:

а – полное перемещение; б – эквивалентное напряжение (окончание)

18. В итоге должен получиться проект, имеющий следующую цепочку модулей (рис. 41).

Рис. 41. Готовый проект

19. Сохраняем проект в папку, ранее созданную студентом (названия папки и проекта должны быть на английском языке). Для этого нажимаем *File – Save As... – Сохранить*. Для того чтобы проект можно было копировать без опасений сбить прописанные пути файлов, необходимо создать его архив. Для этого нажимаем *File – Archive... – Сохранить – Archive*.

Содержание отчета

1. Титульный лист.

2. Цель работы.

3. Описание работы (с исходной схемой и таблицей для своего варианта).

4. Этапы построения (со скриншотами этапов).

5. Результаты работы (финальные скриншоты окон ANSYS Workbench, Material Designer, ACP (Pre) – Geometry, ACP (Pre) – Model, ACP (Pre) – Setup; Mechanical (Steady-State Thermal) – граничные условия, Mechanical (Steady-State Thermal) – результаты; Mechanical (Static Structural) - граничные условия, Mechanical (Static Structural) – результаты).

6. Вывод.

Контрольные вопросы

1. Какие модули используются в данном проекте?

2. Для чего нужен модуль ACP (Pre)?

3. Какие объемные элементы можно использовать в Material Designer?

4. Для чего создавать сеточную модель?

5. Основные инструменты для создания сетки в ANSYS.

6. Основные этапы выполнения работы.

Лабораторная работа № 5 ИСПОЛЬЗОВАНИЕ ИНСТРУМЕНТА PARAMETERS ПРИ МОДЕЛИРОВАНИИ ДЕФОРМАЦИИ ОБОЛОЧКИ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Цель работы

Изучение основных этапов проведения статического прочностного анализа в среде *ANSYS Workbench* с использованием инструмента *Parameters*. Приобретение студентами навыков в использовании программного инструмента *ANSYS Workbench – Static Structural* при проведении прочностного анализа двух связанных пластин из композиционных материалов, созданных с помощью *Material Designer* и *ACP (Pre)*.

Описание работы

Используя модули *Material Designer*, *ACP* (*Pre*), *Static Structural* и инструмент *Parameters*, необходимо рассчитать полное перемещение (*Total Deformation*) при разных значениях величин сил для двух связанных пластин из композиционных материалов (рис. 1). Известны: материал волокна и наполнителя, тип объемного элемента, участки жесткой заделки (*Fixed Support*) и направление действия вектора сил F_1 и F_2 (*Force*), приложенного к поверхности (пять значений с шагом в 5 Н. Пример: 10Н – 15H - 20H - 25H - 30H) (табл. 1).

Рис. 1. Расчетная схема

Исходные данные

Вариант	Тип объемного элемента	F_1, H	F2, H
1	Регулярная однонаправленная	50	40
2	Плетеная	40	35
3	Регулярная однонаправленная	70	50
4	Сферическая	60	60
5	Регулярная однонаправленная	40	45
6	Сферическая	10	80
7	Плетеная	55	55
8	Сферическая	65	30
9	Сферическая	65	85
10	Регулярная однонаправленная	40	40
11	Регулярная однонаправленная	40	30
12	Сферическая	35	70
13	Регулярная однонаправленная	25	45
14	Сферическая	45	80
15	Плетеная	75	55
16	Регулярная однонаправленная	30	30
17	Плетеная	45	85
18	Плетеная	20	70
19	Сферическая	70	65
20	Регулярная однонаправленная	85	30
21	Сферическая	65	20
22	Плетеная	40	10
23	Плетеная	30	25
24	Сферическая	70	55
25	Регулярная однонаправленная	60	65
26	Плетеная	40	65
27	Сферическая	40	40
28	Плетеная	20	40
29	Регулярная однонаправленная	55	35
30	Плетеная	35	25

Порядок выполнения лабораторной работы

1. Запускаем ANSYS Workbench и добавляем несколько модулей: Material Designer, два ACP (Pre) и Static Structural (рис. 2).

Рис. 2. Добавление модулей

2. Дважды нажимаем ЛКМ на блок *Engineering Data* (1), после чего жмем на *Engineering Data Sources* (2). Выбираем библиотеку *Composite Materials* (3) и подключаем материалы: *Carbon Fiber (290 GPa)* и *Epoxy E-Glass UD* (4). После этого можно закрыть *Engineering Data* (5) (рис. 3).

a

Рис. 3. Выбор материала волокна и наполнителя (начало)

Increased Project - Workhanch													_		×
and onsaved Project - Workbench														0	^
Ele Edit View Lools Units Extens	sions Jo	ibs Help													
🎦 🚰 🔜 人 🛉 Project / 🦪 A2:E	Engineerin	gData 🗙 🔍													
🍸 Filter Engineering Data 🚻 Engineering Data	a Sources	Z													
Toolbox 💌 🕈 🗙	Engineer	ring Data Sources							* ¢	×	Table o	f Properties Rov			▼ ₽ X
Viscoelastic		A	в		С			D		^		A			
Shape Memory Alloy	1	Data Source	1	Lo	cation			Descriptio	n		1	Density (kg m	n-3) 🗦		
Geomechanical	6	Geomechanical Materials					General use	material samples fo	r use with	1	2	2000			
🕀 Damage							geomechani	cal models.		-					
Cohesive Zone	7	U Composite Materials				8	Material sam	ples specific for co	mposite structures.	-					
Fracture Criteria	8	General Non-linear Materials					General use analyses.	material samples fo	r use in non-linear						
Crack Growth Laws	9	Explicit Materials					Material sam	iples for use in an e	xplicit analysis.						
Thermal	10	Hyperelastic Materials					Material stre	ss-strain data sam	ales for curve fitting						
Thermopower	10		-			-	B-H Curve s	amples specific for	ise in a magnetic						
Linear "Soft" Magnetic Material	11	Magnetic B-H Curves				×.	analysis.	sinples specific for	and the mognetic	×					
E Linear "Hard" Magnetic Material	Outline	of Composite Materials							* Q	×					
Nonlinear "Soft" Magnetic Material		A		В	С		D		E	^					
Nonlinear "Hard" Magnetic Material	1	Contents of Composite Materials	ţ.	Ad	d		Source	De	scription		Chart: I	No data			• # X
Electric	3	📎 Carbon Fiber (230 GPa)		4		æ	Composite_M	Fibers only							
Brittle/Granular	4	Scarbon Fiber (290 GPa)	4	4	۲		Composite_M	Fibers only							
Equations of State	5	Scarbon Fiber (395 GPa)		-	-	-	Composite_M	Fibers only							
Porosity	6	So E-Glass		-		-	Composite M	Fibers only							
E Failure	7	Enoxy Carbon LD (230 GPa) Prepren		-	-		Composite M								
Nonlinear		Epoxy Carbon LD (230 GPa) Wet			-	-	Composite M								
Elasto-Plastic Behavior	0	Contraction of the contract of the contract			-	-	Composite M								
Perforated Media	9	S Epoxy Carbon OD (395 GPa) Prepreg				=	Composite_M			-					
Composite	10	Epoxy Carbon Woven (230 GPa) Prepreg		1	_	-	Composite_M			-					
H Forming Hastidty	11	Epoxy Carbon Woven (230 GPa) Wet			_	-	Composite_M			-					
H Foams	12	Epoxy Carbon Woven (395 GPa) Prepreg		4	-	-	Composite_M								
	13	No. Epoxy E-Glass UD	4	4	9	P	Composite_M			~					
El Custom Material Models	Propertie	es of Outline Row 13: Epoxy E-Glass UD	-			-			* Q	×					
		A						B	c	^					
View All / Customize										~					
Ready								Job Monitor	No DPS Connection	n (Bet	a) 😐 :	Show Progress	🔑 Shov	0 Mes	sages 🔡
				б											
				υ											

Рис. 3. Выбор материала волокна и наполнителя (окончание)

3. В первом модуле дважды нажимаем ЛКМ на *Material Designer*, после чего откроется окно, представленное на рис. 4.

🔯 늘 🥫 🎝 - ሮ - 🔹	A:	Material Designer - De	sign1 - SpaceClain	m - Material Desig	ner	- 🗆 ×
File Additive Material De	signer					• 🕐
🖹 🎊 🥯	in 🔅 💖	🔘 🎯		0	00	
Edit 5	andom UD Chopped Fiber Wove Composite Composite Compos RVE Type	n Particle Random ite Particle	User Defined	RVE Solve	Update Displ	ay Help Exit MD Mode
Outline RVE Model RVE Model Materials Geometry Mach	4					ANSYS
Struct_ Laye_ Selecti_ Grou_ Views	s Outi					
Options - Selection	ф.			Y		
🜠 Sketch				4		
 Snap to grid Snap to angle Create layout curves 			z	×		
Properties	a y y y y y y y y y y y y y y y y y y y					10mm
Properties Appearance	A Derien1 X					× d b
Ready	- wagin v	▲-			≎ № 🔭 - 🖂 -	

Рис. 4. Окно Material Designer

4. В верхней панели инструментов (рис. 5) выбираем тип объемного элемента модифицированной микроструктуры согласно своему варианту (табл. 1).

Рис. 5. Выбор объемного элемента модифицированной микроструктуры

5. В появившейся слева панели присваиваем материал матрицы/ наполнителя (1) и частицы/волокон (2) (рис. 6). После чего необходимо применить изменения (3).

Рис. б. Присвоение материалов

6. Для создания геометрии объемного элемента (рис. 7) нажимаем ЛКМ на *Geometry* (1). После этого в левой панели настроек отобразятся настройки геометрии объемного элемента (2) (в зависимости от типа, выбранного объемного элемента настройки могут быть различны). Нажимаем на галочку (3) и на рабочем пространстве появится трехмерная модель сгенерированной объемного элемента (4).

Рис. 7. Создание геометрии объемного элемента

7. Сгенерируем сеточную модель объемного элемента (рис. 8). Нажимаем ЛКМ на *Mesh* (1) и задаем максимальный размер сеточного объемного элемента (2). Нажимаем на галочку (3) и видим на экране сгенерированную сетку (4) объемного элемента.

Рис. 8. Создание сетки объемного элемента

8. Нажимаем ЛКМ на *Settings* (1). На панели слева (2) можно выставить интересующие настройки анализа объемного элемента (рис. 9), но в нашем

случае, они остаются без изменения. Нажимаем на галочку (3) и видим системное окно, предупреждающее о результатах проведенного анализа (4).

Рис. 9. Выбор характеристик частицы

9. Присваиваем название созданному объемному элементу (рис. 10). Для этого нажимаем правую кнопку мыши (ПКМ) на *Analyses* (1) – *Constant Material* (2), вводим название материала (3) и нажимаем на галочку (4). Закрываем окно *Material Designer*.

Рис. 10. Создание сетки объемного элемента

10. Создаем связь между первым и вторым модулями *Material Designer* для присвоения созданного нами композитного материала к анализируемой геометрии через второй блок (рис. 11):

10.1. В окне ANSYS Workbench нажимаем ПКМ на Material Designer
(1) и выбираем Update Update Для обновления проекта композитного материала.

10.2. Зажимаем ЛКМ *Material Designer* (1) и перетаскиваем его к *Engineering Data* (2) к первому модулю *ACP* (*Pre*).

10.3. Нажимаем ПКМ на *Engineering Data* (2) и выбираем *Update*.

Рис. 11. Создание связи

11. Импортируем геометрию:

11.1. Дважды нажимаем ЛКМ на блок *Geometry* у модуля *ACP* (*Pre*).

11.2. В появившемся окне нажимаем *File – Open*.

11.3. Для того чтобы найти созданную геометрию, переходим в папку с ней и выбираем отображение всех форматов – *All Files (*.*)*. Нажимаем на созданную геометрию с расширением «.x_t» и жмем кнопку *Открыть*. Импортированная геометрия показана на рис. 12.

Рис. 12. Импорт геометрии

11.4. После этого окно геометрии можно закрыть.

12. Приступаем к созданию сетки:

12.1. Дважды нажимаем ЛКМ на блок *Model* у модуля *ACP* (*Pre*).

12.2. В открывшемся окне раскрываем вкладку Geometry (1), выделяем геометрию (2) и задаём толщину (3) 0,5 мм (рис. 13).

Рис. 13. Задание толщины пластины

12.3. Задаем настройки сеточной модели:

– жмем ПКМ на *Mesh – Insert – Method*, выделяем геометрию и выбираем метод – *Multizone Quad/Tri*;

– жмем ПКМ на *Mesh – Insert – Sizing*, выделяем всю геометрию и задаем величину ячеек 1 мм.

12.4. Нажимаем ПКМ на *Mesh* и выбираем *Generate mesh*. Готовая сеточная модель представлена на рис. 14. Закрываем окно блока *Model*.

Рис. 14. Генерация сеточной модели

12.5. Присваиваем имя контактной поверхности. Выделяем область ЛКМ, после чего нажимаем на неё ПКМ (1) и выбираем *Create Named Selection...* (2) (рис. 15). В итоге две поверхности будут иметь персональное название (3).

12.6. Нажимаем ПКМ на *Mesh*, выбираем *Update* 🕺 и после этого окно *Mechanical* можно закрыть.

13. Настраиваем слои созданных композитных материалов:

13.1. В окне *Workbench* дважды нажимаем на *Setup* в блоке *ACP* (*Pre*). После этого перед нами появится окно, представленное на рис. 16.

Duj	olicate Q Outline	Solve Solvera	Insert •	Update Generate Mesh	Surface Mesh F	Source/Ta Preview	irget	Method	Sizing	, м	Face eshing	Mesh Copy	Match Control Controls	Pinch		96 N	lesh Grou	Mesh Edit*	Met Disp	trics lay ▼
Out	ine monome				Q	ର୍ 📦	📦 🗳		0 -	÷ (Q	0	Select	🐂 Mode-			D 🖪 🕅	靡 🏽	x.y.z	🛛 📩 Clip
<u></u>	Name	▼ Sea	arch Outli	ne 💙 🖕																
÷	Project [#] Model M	(B4) eometry ACP-Pr laterials oordinate S lesh MultiZc Body S amed Selec Contac	re\Surface Systems one Quad/T izing tions tt	1 Tri Method		1		+		8	Insert Show Go To Hide E	lody Tree Basi	ed On Vis	ible Bodies		> > > F9	-			
										* @	Suppr	ess Body	у				1			
Deta	ils of "Mesh	" ::::::::::::::::::::::::::::::::::::								0	Hide F	ace(s)				F8				
🖃 Di	splay										lasma	ucc()								
Di	splay Style	Use	Geometry	Setting							isome	ric view	v							
	efaults		· · ·							*	Set									
Pr	iysics Prefere	ence Mech	nanical	ollad						*	Restor	e Defau	ılt			н				
H	Flament Siz	re Defa	ult (6.892	oned mm)						Q	Zoom	To Fit				F7				
E Si	zina		un (0,052							0	Zoom	To Selec	tion			Z				
E Q	uality									۲	Image	To Clipt	board		Ctr	+C	60,00 (mm)		
	flation										Curso	Mode								
+ Ba	atch Connec	tions									Curso	moue				ĺ.				
± A	dvanced				Message	ac 00000000					view									
. € St	atistics				message	Tevt				Ø₿.	Look /	\t					Δε	ociation		
										4	Create	Coordi	nate Svete	em.						
Deta	ails Section	n Planes						2		4	Create	Named	Selection	1		Ν				
Crea	te a Named	Selection	for the se	lected geometry enti	ties in the	graphica	l inter	fa 👊 N	o Mes	ଚ	Select	All		Cree	to M	mod	Coloction	(NI)		

Рис. 15. Присвоение имен для поверхностей

Рис. 16. Окно ANSYS Composite PrepPost

13.2. Сразу изменяем единицы измерения на мм. Для этого нажимаем на *Units* в верхней панели и выбираем *MPA (mm,t,s,N,C,USD*).

13.3. Создаем слой волокон композитного материала (рис. 17):

– для этого раскрываем раздел *Material Data* (1), нажимаем ПКМ на *Fabrics* (2) и выбираем *Create Fabric*... (3);

– выбираем материал (4), задаем толщину 0.5 мм (5) и жмем *Apply* (6). Если на экране появится окно с предупреждением, то его можно закрыть. После этого окно можно закрыть (7).

а

鸄 Fabrio	c Propertie	5		_	×
Name:	Fabric.1				
ID: F	abric.1				
General	Analysis	Solid Model Opt.	Draping		
Genera					
N	laterial: n	nat_1 4			~
Thi	ckness: 0.	5 5			
Pric	e/Area: 0.	0			
Weigh	nt/Area: -1	.0			
Post-Pr	ocessing				
Ignore	e for Post-P	rocessing:			
			7	6	
<u> </u>		_			
			ОК	Apply	Cancel

б

Рис. 17. Создание слоя волокон

13.4. Создаем ось координат (рис. 18). Нажимаем ПКМ на *Rosettes* (1) и выбираем *Create Rosette*... (2), жмем *Apply* (3). После этого окно можно закрыть (4).

(1) (2)	Edge Sets Geometry					Y •X
	Rosett 	Create Rosette	2			~
	Look-	Paste				
🕣	Select	Hide All		<u></u>		
4	Orient	Show All		Shell	View	Logge
	Mode					
	Sampl	Sort				
	Sampling P	-		In	[98]	: db.

а

😂 Rosette Pro	operties			_		×
Name: Rose	tte.1 te.1					
Type: Paralle	el					~
Definition						
Origin:	(0.0000,0.0000,0.0000)					
1 Direction:	(1.0000,0.0000,0.0000)			Flip		
2 Direction:	(0.0000, 1.0000, 0.0000)			Flip		
	Shuffle Axes			Swap 1 and 2 D	irection	
			4	3		
		Oł	(Apply	Canc	el
		б				

Рис. 18. Создание оси координат

13.5. Создаем ориентированный блок (рис. 19):

- нажимаем ПКМ на *Rosettes* (1) и выбираем *Create Rosette*... (2);

– выбираем элемент/геометрию (выбираем его в дереве построения в разделе *Element Sets*) (3), настраиваем ориентацию (4), нажимаем *Flip* (5) (чтобы толщина пластины задавалась вовнутрь), после чего выбираем со-

зданную ось координат (6) и жмем *Apply* (7). После этого окно можно закрыть (8).

Рис. 19. Создание ориентированного блока

13.6. Создаем модельную группу (объединение ориентированного элемента и пакета слоев) (рис. 20):

– нажимаем ПКМ на *Modeling Groups* (1) и выбираем *Create Modeling Group*... (2). В появившемся окне жмем *Ok* (3);

- нажимаем ПКМ на *ModelingGroups.1* (4) и выбираем *Create Ply...* (5);

– выбираем первый ориентированный блок (6) и слой композитного материала, жмем *Apply* (8). После этого окно можно закрыть (9).

б

Рис. 20. Создание модельной группы (окончание)

13.7. Включаем отображение сетки (1) и направление волокон (2) в верхней панели (рис. 21). Выбрав модельную группу (3), видим зеленые стрелочки, показывающие направление волокон (4).

Рис. 21. Отображение направления волокон

13.8. Создаем твердотельную модель (рис. 22):

– нажимаем ПКМ на Solid Models (1) и выбираем Create Solid Model... (2);

выбираем элемент (нажимаем на область элемента и выбираем его
 в дереве построения) (3) и жмем *Apply* (4). После этого окно можно за крыть (5).

a

Рис. 22. Создание твердотельной модели

13.9. Закрываем окно ANSYS Composite PrepPost.

14. Подготавливаем модель второй геометрии:

14.1. Для второго модуля ACP (Pre) повторяем шаги 10.2–13.9 с рядом исключений:

– для пункта 11.3 выбираем вторую геометрию (рис. 23).

Рис. 23. Импорт геометрии

– для пункта 13.5 не нажимаем кнопку *Flip* (5).

14.2. В итоге получаем проект, как показано на рис. 24.

•		A				•		В			•		С		
1	۲	Material Designe				1	ACP	ACP (Pre)			1		Static Structural		
2	٢	Engineering Data	× .		-	2	ا 🥏	Engineering Data	× 🔺		2	۲	Engineering Data	~	
3 🞲	۲	Material Designer	~	\sim		3	SC (Geometry	× .		3	P	Geometry	?	
		Material Designe				4	ا 🥥	Model	× .		4	۲	Model	?	
						5	ACP	Setup	1		5		Setup	?	
								ACP (Pre)			6	(Solution	7	
											7	@	Results	?	
													Static Structural		
						-		D					Static Structural		
						▼ 1	ACP	D ACP (Pre)					Static Structural		
						▼ 1 2		D ACP (Pre)		ł			Static Structural		
						▼ 1 2 3		D ACP (Pre) Engineering Data Geometry	× .				Static Structural		
						▼ 1 2 3 4	▲ ≪ ≤ ≤ 1	D ACP (Pre) Engineering Data Geometry Model	× . × .				Static Structural		
						▼ 1 2 3 4 5		D ACP (Pre) Engineering Data Geometry Model Setup	✓ _ ✓ _ ✓ _ ₹				Static Structural		

Рис. 24. Промежуточный проект

15. Поочередно зажимаем ЛКМ блок *Setup* (1) в обоих модулях *ACP* (*Pre*) и перетаскиваем его на блок *Model* (2) в модуле *Static Structural*. После этого появляется окно с двумя вариантами (рис. 25): первый переместит твердотельную модель (есть возможность анализировать каждый слой выбранного сегмента, но может понадобится повторно создать контактные области), а второй переместит тонкостенную оболочку (нет возможности анализировать каждый слой отдельно). После выбора первого варианта нажимаем ПКМ на *Setup* (1) в модуле *ACP* (*Pre*) и выбираем *Update*.

Рис. 25. Импорт данных в Static Structural

16. Приступаем к подготовке и проведению прочностного расчета: 16.1. В окне Workbench дважды нажимаем на *Model* в блоке *Static Structural*. После этого перед нами появится окно, представленное на рис. 26.

Рис. 26 Окно Mechanical
16.2. Задаем граничные условия:

– чтобы зафиксировать геометрию в пространстве, нажимаем ПКМ на *Static Structural* (1) и выбираем *Insert* (2) – *Fixed Support* (3) (рис. 27, *a*). После чего, удерживая кнопку *Ctrl*, указываем нужные поверхности (4) и нажимаем *Apply* (5) (рис. 27, *б*, *в*);

а

б

Рис. 27. Фиксация геометрии в пространстве (начало)

Рис. 27. Фиксация геометрии в пространстве (окончание)

– чтобы задать силу для первой поверхности, нажимаем ПКМ на *Stat-ic Structural* (1) и выбираем *Insert* (2) – *Pressure* (3) (рис. 28, *a*). После чего указываем нужную поверхность (4), нажимаем *Apply* (5), задаем первое значение силы F_1 (примечание: числовое значение задается через «–» для того, чтобы направить силу вниз) (6) и нажимаем на ячейку параметра (7) (рис. 28, *б*);

– чтобы задать силу для второй поверхности, нажимаем ПКМ на *Static Structural* (1) и выбираем *Insert* (2) – *Pressure* (3) (рис. 28, *a*). После чего указываем нужную поверхность (4), нажимаем *Apply* (5), задаем первое значение силы F_2 (примечание: числовое значение задается через «–» для того, чтобы направить силу вниз) (6) и нажимаем на ячейку параметра (7) (рис. 28, *в*).

Рис. 28. Подвод силы

16.3. Выбираем параметры, для этого:

- нажимаем ПКМ на *Solution*, выбираем *Insert* – *Deformation* – *Total*;

– нажимаем ПКМ на Solution, выбираем Insert – Stress – Equivalent (von-Mises). После чего нажимаем на желтую область напротив Ply (1) и указываем первую модельную группу (2) (рис. 29), затем нажимаем Apply;

– нажимаем ПКМ на Solution, выбираем Insert – Stress – Equivalent (von-Mises). После чего нажимаем на желтую область напротив Ply (1) и указываем вторую модельную группу (2) (рис. 29), затем нажимаем Apply;

Рис. 29. Выбор модельных групп

– поочередно переходим в *Total Deformation* и оба параметра *Equivalent Stress* (1) и нажимаем на ячейку параметра напротив максимального значения (2) (рис. 30).

Рис. 30. Включение параметра

16.4. Указываем интервалы рассчитываемых сил:

– сворачиваем окно *Mechanical* и дважды нажимаем ЛКМ на ячейку *Parameter set* (1) (рис. 31);

•	А			•	В				•		С	
L	😵 Material Designer			1	ACP (Pre)				1	_	- Static Structural	
2	Engineering Data	× .		2	Engineering Data	× .			2	۲	Model	~
3	🚯 Material Designer	~		3	Seometry	× .	/	1	3	¢)	Setup	7 🖌
	Material Designer		`\	4	🎯 Model	× 🖌			4	Ŵ	Solution	1
				5	ACP Setup	 Image: A second s	r		5	6	Results	9 🖌
					ACP (Pre)		. k	>	• 6	Ġ⊋	Parameters	
											Static Structural	
				▼ 1	D ACP ACP (Pre)							
				2	Engineering Data	× .						
				3	Seometry	× .						
					~							
				4	🞯 Model	🗸 🔺						
				4 5	Model							
				4 5	Model Setup ACP (Pre)	✓ ▲ ✓						
				4	Model ACP (Pre)	✓ ▲ ✓						
				4	Model Setup ACP (Pre)	✓ <u>,</u> ✓						

Рис. 31. Переход в набор параметров

– задаем силы (пять значений, каждое на 5Н больше предыдущего) (2) и запускаем расчет *Update All Design Points* (3) (рис. 32). В открывшемся окне нажимаем *Yes*;

LR5 - Workbench	n												
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>T</u> ools	Units Extensions Jobs	<u>H</u> elp										
🗋 🗃 🛃 🕞 Project 🙀 Parameter Set 🗙													
Resume ## Update All Design Points 3													
Toolbox 🔻 🕂 X Outline of All Parameters 💌 🕂 X Table of Design Points													
		A		A	В	с	D						
No toolbox items are	1	ID	1	Name 💌	P1 - Force Magnitude 💽	P2 - Force 2 Magnitude	•	P6 - Total Deformation Max					
applicable for	2	Input Parameters	2	Units	N	N	•	mm					
selection.	3	🖃 🚾 Static Structural (C	3	DP 0 (Current)	-50	-40	7						
	4	ι <mark>ρ</mark> Ρ1	4	DP 1	-55	-45		7 7					
	5	і р Р2	5	DP 2	-60	-50							
	*	🗘 New input paramet	6	DP 3	-65	-55		4					
	7	Output Parameters	7	DP 4	-70	-60		7					
	8	🖃 🚾 Static Structural (C	*		2								
	9	P6			2								
	10	P7											
	11	P8 🗸											
	*	New output param											
	13	Charts											

Рис. 32. Задаем силы

– после того как расчет будет закончен переписываем полученные значения в таблицу (рис. 33) и собираем скриншоты результатов (рис. 34).

×	Table of	Design Points					•
		A	В	с	D	E	F
	1	Name 💌	P1 - Force Magnitude 💌	P2 - Force 2 Magnitude 💌	P3 - Equivalent Stress Maximum 💽	P4 - Equivalent Stress 2 Maximum 💌	P5 - Total Deformation Maximum 💌
_	2	Units	N 💌	N 💌	MPa	MPa	mm
C1)	3	DP 0 (Current)	-50	-40	516,72	535,68	8,1482
_	4	DP 1	-55	-45	575,94	592,22	9,0314
_	5	DP 2	-60	-50	635,17	649,05	9,9147
eter	6	DP 3	-65	-55	694,4	705,89	10,798
	7	DP 4	-70	-60	753,62	762,72	11,682
C1)	*						
_							
—							
nete							
_							
_							
	<						
>	Chart: N	lo data					¥
x							

Рис. 33. Результаты расчета в Parameter set

Рис. 34. Результаты расчета:

а – полное перемещение; *б* – эквивалентное напряжение первой модели; *в* – эквивалентное напряжение второй модели 17. Сохраняем проект в папку, ранее созданную студентом (названия папки и проекта должны быть на английском языке). Для этого нажимаем *File – Save As... – Сохранить*. Для того чтобы проект можно было копировать без опасений сбить прописанные пути файлов, создаем его архив. Для этого нажимаем *File – Archive... – Сохранить – Archive*.

Содержание отчета

1. Титульный лист.

2. Цель работы.

3. Описание работы (с исходной схемой и таблицей для своего варианта).

4. Этапы построения (со скриншотами этапов).

5. Результаты работы (финальные скриншоты окон ANSYS Workbench, Material Designer, ACP (Pre) – Geometry, ACP (Pre) – Model, ACP (Pre) – Setup, Mechanical – граничные условия, Parameter set – результаты; Mechanical – результаты, таблица по основе данных из Parameter set).

6. Вывод.

Контрольные вопросы

- 1. Что такое сеточная модель?
- 2. Краткая характеристика САЕ-систем. Примеры.
- 3. Для чего нужен Material Designer?
- 4. В каком блоке происходит настройка сеточной модели?
- 5. Как создавать связь между модулями?
- 6. Для чего нужна операция Fixed Support?
- 7. Для чего используется инструмент Parameters?
- 8. Основные этапы выполнения работы.

ЗАКЛЮЧЕНИЕ

В настоящем практикуме приведены пять лабораторных работ, которые могут быть использованы при изучении следующих дисциплин: «Прикладные программы анализа технологических систем и процессов», «Проектная деятельность», «Цифровые технологии в химическом, нефтегазовом и энергетическом машиностроении», «Основы сеточного моделирования для цифровых двойников технических объектов», «Компьютерные системы для проектирования технологического оборудования», «Технология разработки цифровых двойников технических систем, машин и аппаратов» и «Цифровые технологии проектирования технологического оборудования» для студентов, обучающихся по направлениям 28.03.02 «Наноинженерия», 15.03.02, 15.04.02 «Технологические машины и оборудование» и 16.03.03, 16.04.03 «Холодильная, криогенная техника и системы жизнеобеспечения»

Библиографический список, а также приложение «Пример оформления отчета», представленные в конце практикума, будут полезны при выполнении и оформлении лабораторных работ.

Студент в ходе выполнения лабораторных работ может продемонстрировать свой уровень квалификационной подготовки и наиболее глубоко изучить теорию на примере: статического прочностного анализа пластины из композиционных материалов; динамического прочностного анализа оболочки из композиционных материалов; теплового анализа оболочки из композиционных материалов; проведения комбинированного анализа оболочки из композиционных материалов; использования инструмента Parameters при моделировании деформации оболочки из композиционных материалов.

153

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Калашников, А. М. Моделирование и анализ объектов с контролируемой микроструктурой композитных конструкционных материалов [Электронный ресурс] : практикум : в 2 ч. / А. М. Калашников. – Омск : Изд-во ОмГТУ, 2021. – ISBN 978-5-8149-3371-3. – Ч. 1 : Компьютерное моделирование. – 2021. – 1 эл. опт. диск (CD-ROM). – ISBN 978-5-8149-3372-0.

2. Касаткин, А. Г. Основные процессы и аппараты химической технологии : учеб. для вузов / А. Г. Касаткин. – 10-е изд., стер., дораб. – Москва : ООО ТИД «Альянс», 2004. – 753 с.

 Логинов, А. В. Процессы и аппараты химических и пищевых производств : пособие по проектированию / А. В. Логинов, Н. М. Подгорнова, И. Н. Болгова. – Воронеж : ВГТА, 2003. – 264 с.

4. Калашников, А. М. Моделирование и анализ компрессорного и теплообменного оборудования с применением компьютерных технологий [Электронный ресурс] : практикум : в 2 ч. / А. М. Калашников. – Омск : Изд-во ОмГТУ, 2017. – ISBN 978-5-8149-2533-6. – Ч. 1 : Трехмерное моделирование. – 2017. – 1 эл. опт. диск (CD-ROM). – ISBN 978-5-8149-2534-3.

5. Калашников, А. М. Моделирование и анализ компрессорного и теплообменного оборудования с применением компьютерных технологий [Электронный ресурс] : практикум : в 2 ч. / А. М. Калашников. – Омск : Изд-во ОмГТУ, 2017. – ISBN 978-5-8149-2533-6. – Ч. 2 : Компьютерные технологии в инженерном анализе. – 2017. – 1 эл. опт. диск (CD-ROM). – ISBN 978-5-8149-2535-0.

ПРИЛОЖЕНИЕ

ПРИМЕР ОФОРМЛЕНИЯ ОТЧЕТА

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Омский государственный технический университет»

Кафедра «Холодильная и компрессорная техника и технология»

Дисциплина «Прикладные программы анализа технологических систем и процессов»

Лабораторная работа №4

на тему: «ПРОВЕДЕНИЕ КОМБИНИРОВАННОГО АНАЛИЗА ОБОЛОЧКИ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ»

Вариант 1

Выполнил: ст. гр. НИ-191 Иванов И. И. Проверил: ст. пр. каф. ХКТТ Калашников А. М.

Омск, 2022

Цель работы:

Изучение основных этапов проведения комбинированного анализа в среде ANSYS Workbench. Приобретение студентами навыков в использовании программного инструмента ANSYS Workbench – Steady-State Thermal и Static Structural при проведении комбинированного теплового и прочностного анализа оболочки из композиционных материалов, созданных с помощью Material Designer и ACP (Pre).

Описание работы:

Используя модули Material Designer, ACP (Pre), Steady-State Thermal и Static Structural необходимо рассчитать: распределение температуры по оболочке (Thermal), полное перемещение (Total Deformation) и эквивалентные напряжения (Equivalent Stress) из композиционных материалов (рис. 1). Известны: тип объемного элемента, участки с температурой T₁, T₂, давлением P и жесткой заделкой (табл. 1).

Рис. 1. Исходная схема

Табл. 1. Исходные данные

Вариант	Номер схемы	Тип объемного элемента	T₁, °C	T₂, °C	Р, кПа
1	1	Сферическая	50	10	10

Порядок выполнения лабораторной работы:

 Запустим ANSYS Workbench и добавляем несколько модулей: Material Designer, ACP (Pre), Steady-State Thermal и Static Structural.

2. Подготовим материал волокна и наполнителя:

2.1. Дважды нажимаем ЛКМ на блок Engineering Data, после чего жмем на Engineering Data Sources. Выбираем библиотеку Composite Materials и подключаем материалы волокна – Carbon Fiber (290 GPa) и наполнителя – Epoxy E-Glass UD. Нажимаем на Engineering Data Sources еще раз, чтобы вернуться к используемым в проекте материалам.

2.2. Добавим коэффициент теплового расширения и теплопроводности для наполнителя и волокна:

 – Для волокна коэффициент теплового расширения Isotropic Secant Coefficient of Thermal Expansion будет равен 1.10⁻⁶ 1/°С, а коэффициент теплопроводности Isotropic Thermal Conductivity будет равен 0,03 Вт/(м.°С).

 Для наполнителя коэффициент теплового расширения Isotropic Secant Coefficient of Thermal Expansion будет равен 5·10⁻⁵ 1/°С, а коэффициент теплопроводности Isotropic Thermal Conductivity будет равен 0,2 Вт/(м·°С).

 В первом модуле дважды нажимаем ЛКМ на Material Designer, после чего откроется рабочее окно.

 В верхней панели инструментов выбираем тип объемного элемента модифицированной микроструктуры согласно своему варианту (табл. 1).

 В появившейся слева панели необходимо присвоить материал матрицы/наполнителя и частицы/волокон. После чего необходимо применить изменения.

6. Для создания геометрии объемного элемента нажимаем ЛКМ на Geometry. После этого в левой панели настроек отобразятся настройки геометрии объемного элемента (в зависимости от типа, выбранного объемного элемента, настройки

157

Рис. 5. Окно Model

Рис. 6. Окно Setup

Рис. 7. Граничные условия теплового расчета

Рис. 8. Температура

Рис. 10. Полное перемещение

Рис. 11. Эквивалентные напряжения

+ x (N)	jast Sch	enatic												
^														
	-	A		-	8					c		•	D	
	3	Material Designer			KP PH)				: 🚺	Steady-State Th	ernal	1 -	Static Structural	
	2	🛷 Engineering Data	×. /	2	🖲 Engineering D	eka 🗸	7	1	2 🧉	Model	×.	 2 🥩	Nodel	~
3	3	Material Designer	1	3	Geometry	1		/	3 🧯	Setup	× .	3 🤹	l Setup	1
		Material Designer		4.	Pool	1	77		4 6	Solution	× .	4 🖬	Solution	4
				5	Setup	~	Y		5 🕫	Results	×.	: 🥫	Results	~
					ACP(Pre)					Steedy-State The	ernal		Satic Studiural	

Рис. 12. Окно ANSYS Workbench

Вывод: Изучены основные этапы проведения комбинированного анализа в среде ANSYS Workbench. Приобретены навыки использования программного инструмента ANSYS Workbench – Steady-State Thermal и Static Structural при проведении комбинированного теплового и прочностного анализа оболочки из композиционных материалов, созданных с помощью Material Designer и ACP (Pre).

В результате выполнения лабораторной работы были получены следующие изображения: выбор материалов; создание элементарной ячейки; импорт 3Dмодели; окно Model; окно Setup; граничные условия теплового расчета; распределение температуры; граничные условия прочностного расчета; полное перемещение и эквивалентные напряжения. В результаты выпиленных расчетов были полученные следующие интервалы искомых характеристик:

1) температура: 10 – 50 [°С];

полное перемещение: 0 – 0,00939 [мм];

3) эквивалентное напряжение: 0,003586 – 73,952 [МПа].